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Preface

“If our brains were simple enough for us to under-
stand them, we’d be so simple that we couldn’t.”

Ian Stewart [1]

About this thesis

This thesis deals with challenges faced by an interconnected world that is strongly influ-
enced by the recent digital revolution. Naturally, connectedness is represented in terms
of networks: systems that consist of nodes and of edges that represent connections be-
tween the nodes. Nodes can be individuals, locations, technological entities such as
Internet routers, or neurons in the brain, to mention only a few. Hence, edges represent
physical connections or interactions, such as friendship relations or gene interactions.

Connectedness implies the coupling of many systems or components within a large
entity. In reality, those large entities often exhibit behaviors that cannot be explained
by the interaction of their components in isolation; a phenomenon called emergence. The
study of emergence forms part of complexity theory, which is introduced in the following
pages.

This thesis has two main parts titled Evolution and ecology of the digital world and Ge-
ometry of multiplex networks. In Evolution and ecology of the digital world, we develop a
series of models based on empirical observations in order to describe the evolution of and
competitive interactions between online social networks. The most natural description
of these systems requires the treatment of interconnected networks, i.e. several networks
that are coupled and hence interact in some way. We consider important properties
of interacting networks in Geometry of multiplex networks, where we use a geometric
approach to study the structure and function of so-called multiplex networks: systems
that consist of multiple network layers and in which the same node can be present in
different layers.

In the following pages, I provide a brief non-technical introduction to the digital revo-
lution; present related opportunities and risks for society; and consider pre-digital social
networks, complex systems, and complex networks. For a comprehensive introduction
to the science of complexity, nonlinear physics, and complex networks, I recommend the
following books:

• Nonlinear dynamics and chaos: with applications to physics, biology, chemistry,
and engineering by Steven Strogatz [2]
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• Die Erforschung des Chaos: eine Einführung in die Theorie nichtlinearer Systeme
by John Argyris, Gunter Faust, Maria Haase, and Rudolf Friedrich (in German) [3]

• Introduction to the Modeling and Analysis of Complex Systems by Hiroki Sayama [4]

• Networks: An Introduction by Mark Newman [5]

• Dynamical Processes on Complex Networks by Alain Barrat, Marc Barthlemy, and
Alessandro Vespignani [6]

• The Structure and Dynamics of Networks by Mark Newman, Albert-László Barabási,
and Duncan Watts [7]

For further reading on networks, the digital revolution, and its impact on society and
the economy, I recommend the following non-technical books:

• The Rise of the Network Society by Manuel Castells [8]

• Everything Is Obvious: How Common Sense Fails Us by Duncan Watts [9]

• Why information grows: the evolution of order, from atoms to economies by César
Hidalgo [10]

• Thinking Ahead - Essays on Big Data, Digital Revolution, and Participatory Mar-
ket Society by Dirk Helbing [11]
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1 The digital revolution and the century of
complexity

“The digital revolution is far more significant than
the invention of writing or even of printing.”

Douglas Engelbart

1.1 The digital revolution: an unprecedented opportunity
1.1.1 The rise of the Internet
During the Cold War, the Defense Advanced Research Projects Agency (DARPA) of
the US Defense Department invented a system to ensure the preservation of commu-
nications in the event of a nuclear war. The system needed to be resilient against the
removal or takeover of any of its parts. As a consequence, such a system had to be
designed in a decentralized way, where every component could in general be replaced
by every other component. Eventually, building on this architecture, the US Defense
Department set up ARPANET, which later became the Internet that today links bil-
lions of devices worldwide and is used for communication in a post-Cold War, digitally
connected world [8, 13].

The lack of any central control of the Internet means that it evolved and continues to
evolve in a self-organized fashion. Indeed, the structure of the Internet exhibits a very
interesting feature: the lack of scale. In particular, in [14], the authors showed that the
degree distribution of the Internet at the Autonomous System1 (AS) level is given by a
power law with exponent γ ≈ 2.1. This means that the probability that any randomly
selected node has k connections is given by P (k) ∝ k−2.1.

The large size of the Internet presents a challenge: how to find efficient paths to route
information from a given source to a given target. Nowadays, there are two versions of
Internet protocols, namely IPv4 and IPv6, which are used to route Internet traffic. IPv4 is
the version originally deployed in the ARPANET in 1983. IPv6 is the most recent version
of the protocol. The networks corresponding to these two protocols can be represented
as a two-layer system. In this thesis, in Geometry of multiplex networks, we discuss
how routing paths can be found efficiently using both of these layers simultaneously and
relying only on local knowledge. In particular, we offer an answer to the question “Under
what conditions does routing using both layers of the system outperform the use of only
a single layer?”.

1In [15], an Autonomous System is defined as “a connected group of one or more IP prefixes run by
one or more network operators which has a single and clearly defined routing policy”.
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1 The digital revolution and the century of complexity

1.1.2 Web 2.0: online social networks and computational social science
Whereas the part of this thesis titled Geometry of multiplex networks is devoted to the
physical structure of the Internet and other networks, the part Evolution and ecology of
the digital world provides a system-level perspective of platforms that enable interactions
between users. The use of the Internet has experienced a paradigm shift from a collection
of static pages, the original World Wide Web that we can term Web 1.0, to become an
omnipresent user-centered interactive medium: Web 2.0. According to Cormode and
Krishnamurthy, Web 1.0 is characterized by the following:

“Content creators were few in Web 1.0 with the vast majority of users
simply acting as consumers of content.”

Cormode, G. and Krishnamurthy, B., 2008 [16]

It was Cormode and Krishnamurthy who popularized the term Web 2.0, however, the
expression dates back to Darcy DiNucci who in 1999 already predicted very precisely
the influence the Internet would have and its use nowadays, more than 15 years later:

“The Web we know now, which loads into a browser window in essentially
static screenfuls, is only an embryo of the Web to come. The first glimmerings
of Web 2.0 are beginning to appear, and we are just starting to see how
that embryo might develop. The Web will be understood not as screenfuls
of text and graphics but as a transport mechanism, the ether through which
interactivity happens. It will [...] appear on your computer screen, [...] on
your TV set [...] your car dashboard [...] your cell phone [...] hand-held
game machines [...] maybe even your microwave oven.”

Darcy DiNucci, 1999 [16, 17]

The nature of Web 2.0 is to promote collaboration on an unprecedented scale. As
a consequence, new platforms referred to as “Wikis” have emerged, with Wikipedia
the most popular example. The collaborative nature of Web 2.0 has also led to the
rapid growth of large-scale open-source projects and more recently to crowdsourcing
and crowdfunding. The key players in Web 2.0 are surely online social networks such
as Facebook, Twitter, Google+, or LinkedIn, which are platforms designed to promote
interaction between individuals in a digital environment at the global scale. Online social
networks such as Twitter or Facebook have recently seen exceptional growth and they
now2 account for more than two billion active accounts [18] and cover 72% of online U.S.
adults [19].

“Social science still has not found its Kepler. But three hundred years
after Alexander Pope argued that the proper study of mankind should lie not
in the heavens but in ourselves, we have finally found our telescope. Let the
revolution begin...”

Duncan Watts [9]

2As of 2014.
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1.1 The digital revolution: an unprecedented opportunity

Web 2.0 and especially online social networks provide researchers with data related
to human interactions on previously unattainable scales. The availability of such data
has led to the foundation of a new scientific discipline called “computational social
science” [20]. Computational social science aims to provide data-driven, quantitative
descriptions of human behavior. This new discipline is intrinsically multidisciplinary as
it employs a collection of ideas, concepts and methods from physics, computer science,
and social science.

The unprecedented success of online social networks is at the root of computational
social science. However, the mechanisms that determine the fate of digital services at
the system level are still poorly understood. In this thesis, we aim to provide insight
into the evolution of and competitive interactions between online social networks using
tools developed within the theory of complex systems. In the part titled Evolution
and ecology of the digital world, we offer answers to questions such as: “How does the
structure of online social networks emerge?”, “Can several online social networks coexist
or does competition always lead to one service dominating over others?” and “What
mechanisms are responsible for Facebook overtaking its competitors and could things
have turned out differently?”.

1.1.3 Collective intelligence

“We are all now connected by the Internet, like neurons in a giant brain.”
Stephen Hawking

Neurons perform quite simple tasks. In a nutshell, they react to a voltage; if that
voltage is above a certain threshold, the neuron creates an electrochemical pulse that
activates synaptic connections. Despite this simplicity, the combination of billions of
interacting neurons in the human brain gives rise to an entity capable of developing a
consciousness. Needless to say, the operations carried out by single neurons are remark-
ably simple compared to those executed by the whole brain. It is the connections, the
synapses, that enable the emergence3 of the intelligence of an individual.

Now, imagine a new kind of brain. A brain in which neurons are individuals, equipped
with the capabilities of a whole human brain. It is impossible for us to imagine what such
a system would be capable of – just as a single neuron cannot imagine consciousness.
Let us call this new system “collective intelligence” [21]. We are to a neuron what
the collective intelligence is to us. The connections in this new system, the synapses
of collective intelligence, are digital services that connect billions of individuals, very
nearly in real-time. We are still only witnessing at most the first glimpse of the potential
emergent collective intelligence. Yet, it offers hope of solving problems in ways that we
still cannot imagine.

3Emergence or emergent behavior means that a system exhibits certain features or performs certain
functions that cannot be explained by observing the constituents of the system in isolation. We
introduce this concept in more detail in section 1.3 of the introduction.
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1 The digital revolution and the century of complexity

1.1.4 The risk of totalitarian control and manipulation

Opportunity and risk always come together. It is no surprise that the same environment
that provides the opportunity for the emergence of collective intelligence could also be
the hatching ground of a dystopia. That disastrous society would be one in which a
few entities had almost complete control over information [22] and where that power
could be used to control and manipulate individuals on unprecedented scales [23,24]. In
that nightmare scenario, secret algorithms run by Google or Facebook would control the
choices and emotions [25,26] of individuals.

And then there is the opposite: a “digital democracy” where individuals are in control,
and where digital diversity ensures the freedom of information and favors the emergence
of collective intelligence [27]. In the following we discuss the fundamental principles that
could sustain such a system.

1.1.5 Risk mitigation and digital prosperity: a manifesto for digital diversity
and decentralization

The risks discussed in the previous section can be mitigated by two approaches, which can
and should be combined. The first, which we refer to as digital diversity, can be seen
by analogy with the situation involving traditional media. Every traditional medium
(newspaper, TV station, or whatever) selects which news to cover and how. Hence,
long before the digital age and the invention of the Internet, the so-called framing effect
existed. However, the existence of a sufficient number of independent media providers
(different TV stations, newspaper publishers, and so forth) mitigated the risk of public
opinion being controlled or individuals being manipulated. In the digital world, only a
few global players, such as Google and Facebook, control a huge share of the worldwide
market. Whereas Google’s search engine algorithms can be compared to framing in
traditional media, the impact of Facebook is of a completely unprecedented type; for
the first time, a centralized entity has the power to control social contagion and peer
influence. The algorithms that determine what Facebook shows in the newsfeed of
an individual have been shown to be capable of altering the emotional state of users
and could be used to influence their decisions [28]. While such control offers almost
unimaginable power to a few centralized entities, it would not arise in a diverse digital
landscape where numerous services coexisted and competed for the attention of users.
But is digital diversity possible from a system-level perspective or will the competition
for the attention of users always lead to a single entity becoming dominant? In the part
titled Evolution and ecology of the digital world, we provide a comprehensive answer to
that question. In addition, it has been shown that diversity increases the performance of
groups [27]; a finding that probably applies equally to the digital environment. Hence,
a diverse digital landscape is a more fertile ground for collective intelligence to emerge
and prosper, than one with a single dominant entity.

Diversity reduces the power of single centralized entities. Another approach to mit-
igate the risks of powerful, nontransparent monopolies of information is the decentral-
ization of system architectures. Recently, Bitcoin [29], a decentralized system in the

6



1.2 Pre-digital social networks

monetary sector, has attracted a lot of attention. The main difference between this cur-
rency and conventional ones is that by design it cannot be controlled by any single entity,
such as a central bank. Analogously, decentralized information systems [12,30] offer the
advantage of transparency and impede abuse by single, centralized entities; in addition
to offering better scalability. So, such systems could pave the way for a true “digital
democracy” [22]. A decentralized architecture, however, poses certain challenges for
the operationality of the system; a key challenge being that of how to efficiently search
and navigate with only local knowledge. In the part titled Geometry of multiplex net-
works, we provide an elegant solution to this challenge, especially for several interacting
networks, as is the case in reality.

1.2 Pre-digital social networks

1.2.1 Milgram experiment

In 1967, Stanley Milgram published the results of an experiment he conducted to answer
the following question:

“Given any two people in the world, person X and person Z, how many
intermediate acquaintance links are needed before X and Z are connected?”

Stanley Milgram [31]

The experiment Milgram conducted was the following. Participants chosen as starting
points of the study were provided with information about a target person to whom they
had to send a letter. In particular, the information they were given was of the type that
the target is the wife of a divinity school student or a stockbroker who works in Boston
and lives in Sharon, Massachusetts. They were supposed to forward the letter only to
people they knew on a first-name basis to avoid contacting the target directly if they
did not know him or her personally. The results were quite surprising. On average, it
took only five steps for the letter to reach the target for the 44 out of 160 that were
successfully delivered [31]. Five steps means six degrees of separation; an expression
that has become famous since Milgram’s experiment.

For the messages that were successfully delivered, the number of steps it took is only an
upper bound of the shortest possible path, since individuals do not possess knowledge of
the whole social graph and hence their choice of the next step is not necessarily optimal.
However, one can also argue that the more steps a message is forwarded through, the
higher the probability that one of the individuals involved will decline to participate and
will not forward the letter. Hence, some of the messages would actually have reached
their target in a higher number of steps, which would increase the mean number of
hops required to successfully deliver a letter. Given these considerations, how close is
Milgram’s result to the actual distance? As we will see in the following, it is in fact quite
close.
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1.2.2 From six to five degrees of separation

Nowadays, large-scale data related to social connections is available from online social
networks such as Facebook. The availability of this data allows researchers to study
questions such as that addressed by Milgram on unprecedented scales and allows them
to measure the average number of hops between two individuals precisely.

In [32], the authors analyzed the entire graph of friendship relations of the online social
network Facebook in May 2011. The network analyzed consists of 721 million active user
accounts. They found that the average number of hops is around four. Hence, instead of
Milgram’s six degrees of separation, Facebook’s social graph suggests only five degrees
of separation.

More recently, in [33], researchers at Facebook measured the average number of hops
between two individuals in Facebook’s social graph again, which at that time4 contained
approximately twice the number of users as in the previous study. Remarkably, they
found that the average number of hops has decreased. Hence, we are witnessing a
shrinking average shortest pathlength. This type of behavior is predicted by our model
presented in chapter 2 of the part titled Evolution and ecology of the digital world.

1.2.3 Why did the experiment work?

In the light of the findings from the analysis of Facebook, the result Milgram obtained
is remarkable. Whereas knowledge of the social graph of Facebook allows us to compute
the shortest number of hops, Milgram’s experiment relied exclusively on the capacity of
individuals to forward messages efficiently without knowledge of the entire social graph.
Milgram’s findings suggest that the paths found by the participants in his study were
close to optimal. Why is that the case?

The answer to this question is due to the fact that individuals were given certain
information about the target, including their geographical location and occupation. As
Milgram states:

“... each intermediary moves the folder toward the target person. That is,
a certain amount of information about the target person –his place of em-
ployment, place of residence, schooling, and so forth– is given to the starting
subject, and it is on the basis of this information alone that he selects the
next recipient of the folder.”

Stanley Milgram [31]

What this means is that individuals can to some extend judge which of their contacts
is closer to the target. The meaning of closer is obvious in a geographical sense; they
can choose to forward the message to the contact who lives (or works) closest to the
target. A chain of such forwarding hops presented in the original paper [31] confirms
this trend: the source was located in Omaha, Nebraska, and forwarded the message to
an individual in Council Bluffs, who then forwarded the message to someone in Belmont,

4As of 2016.
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Massachusetts, who then forwarded it to the town of the target, Sharon, Massachusetts.
Through each of these steps, the geographical distance to the target is reduced. However,
not only geographical information was used to forward the messages, and the notion of
proximity is more abstract in other contexts or domains. Knowing that the target is a
judge will have the effect that an individual would preferentially forward the message
to someone who they deem might know a judge, for example a lawyer. In an abstract
sense, a lawyer is close to a judge in the occupation domain, or layer in the language of
networks. Hence, Milgram’s experiment was successful because individuals were able to
select good candidates in a multilayer environment with only local knowledge.

We discuss the generalized notion of proximity in terms of multilayer networks em-
bedded in a geometric space with application to the problem of routing messages relying
only on local knowledge in part Geometry of multiplex networks.

1.3 Complex systems, complex networks, and beyond
1.3.1 More is different: what is a complex system?
There are in fact numerous definitions of complex systems. Whereas there is surely some
redundancy among them, there is no single accepted definition; and some definitions or
interpretations differ significantly. Here, I present some definitions that I consider to be
especially useful, interesting, or historically relevant.

“Roughly, by a complex system I mean one made up of a large number of
parts that interact in a nonsimple way. In such systems, the whole is more
than the sum of the parts, not in an ultimate, metaphysical sense, but in the
important pragmatic sense that, given the properties of the parts and the laws
of their interaction, it is not a trivial matter to infer the properties of the
whole.”

Herbert A. Simon [34]

Thus, according to Herbert A. Simon, complex systems are those in which the in-
teraction of a large number of components yields new phenomena that are not trivial
consequences of the parts and their interaction patterns. This process has been referred
to as emergence; roughly the notion that “the whole is more than the sum of its parts”.
Phillip Warren Anderson pointed out the following in his famous paper entitled “More
is different” [35]:

“The ability to reduce everything to simple fundamental laws does not
imply the ability to start from those laws and reconstruct the universe. [...]
The behavior of large and complex aggregates of elementary particles, it turns
out, is not to be understood in terms of a simple extrapolation of the properties
of a few particles. Instead, at each level of complexity entirely new properties
appear, and the understanding of the new behaviors requires research which
I think is as fundamental in its nature as any other.”

Philip Warren Anderson [35]
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The interaction of many parts of a system can often –but not necessarily– be repre-
sented as a network, i.e. a collection of nodes and a set of edges which indicate con-
nections or interactions between nodes. Along this line of reasoning, Hiroki Sayama [4]
defines a complex system as follows:

“Complex systems are networks made of a number of components that in-
teract with each other, typically in a nonlinear fashion. Complex systems may
arise and evolve through self-organization, such that they are neither com-
pletely regular nor completely random, permitting the development of emer-
gent behavior at macroscopic scales.”

Hiroki Sayama [4]

The Encyclopedia Britannica [36] provides a concise definition of complexity as the
scientific theory of complex systems. In particular, it states:

“Complexity, a scientific theory which asserts that some systems display
behavioral phenomena that are completely inexplicable by any conventional
analysis of the systems’ constituent parts. These phenomena, commonly re-
ferred to as emergent behaviour, seem to occur in many complex systems
involving living organisms, such as a stock market or the human brain.”

Encyclopedia Britannica [36]

These different definitions agree on the following three necessary features: i) complex
systems are made up of a large number of components; ii) the components interact in a
nonlinear way (otherwise, the superposition principle would impede the following); and
iii) the system as a whole exhibits behavior that is not observed in the interaction of the
parts in isolation.

Complex systems and complexity science span across many disciplines, topics, and
applications. In [4], Hiroki Sayama presents an organizational map of complex systems
grouped by topics, as shown in Fig. 1.1. The topics spread over several disciplines,
having implications for physics, social science, computer science, biology, and chemistry.

1.3.2 Complicated vs. complex: what is not a complex system?

From the definitions above, it is clear that a system that is not made up of many compo-
nents or which is linear is not a complex system. Is a car a complex system? It is made
up of many components (which are again usually made up of many subcomponents), as
a whole it performs a function (transportation), which the individual parts cannot. It
is, however, not a complex system. It is a system usually referred to as a complicated
system. The function of a car as a whole is exactly the sum of the functions of its parts.
The pistons within the cylinders contract and expand, and their movement is transmit-
ted to the wheels. Each part has its own specialized function; and the whole is the sum
of those functions. In a complex system, the organization of the whole is encoded in the
interaction of the usually similar parts. A flock of birds is a complex system. It organizes
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Figure 1.1: ”Complex systems organizational map” by Hiroki Sayama, D.Sc. - Cre-
ated by Hiroki Sayama, D.Sc., Collective Dynamics of Complex Sys-
tems (CoCo) Research Group at Binghamton University, State Uni-
versity of New York. Licensed under CC BY-SA 3.0 via Commons -
https://commons.wikimedia.org/wiki/File:Complex systems organizational map.jpg
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in a way that is not observed when we only look at the interaction between two birds;
and each part is similar to the others and interchangeable with them. If one bird dies,
another can take its position in the flock. When it comes to a car, if a cylinder fails, it
cannot be replaced by the wheel. The interchangeability of its parts can make complex
systems highly robust and resilient to failures. This property played a central role in the
design of the decentralized architecture of the Internet, as considered in section 1.1.1.

1.3.3 Complex networks and beyond

Complex networks are networks with non-trivial topological properties5. These proper-
ties usually include a heterogeneous distribution of node degrees (the number of con-
nections each node has; for example, friendship relations in a social network), the small
world property (the average fewest hops from some source to a target scales with the
logarithm of the network size) and a large clustering coefficient (the probability that two
neighbors of a given node are themselves connected).

Examples for complex networks can be found in many different areas, disciplines, and
applications: social networks (see Fig. 1.2), communication networks, neuronal networks,
power grids, the Internet, and trade networks, to mention just a few.

Real networks are often not isolated entities, but instead form interacting parts of
larger and more complex systems. An example for such a system is given in [37], where
the authors consider the interaction between the Italian power grid and related Internet
servers. The authors show that this interconnectedness leads to new phenomena; in
particular, the emergence of a potential failure cascade also referred to as a catastrophic
failure.

Interacting networks are found in many real-world systems and hence the study of
their structure and functionality is of high importance. In this thesis, we focus on
one common case of such systems called multiplex networks. Multiplex networks are
systems that consist of several layers, and in which a node can be present simultaneously
in different layers. Examples of such systems are social networks, where we can have
individuals using both Facebook and Twitter, transportation networks, where two cities
can be connected via rail and air travel, biological networks, where different layers encode
different interactions, such as the structural and functional brain network, or scientific
collaboration networks where different layers represent different scientific disciplines. In
this thesis, in the part titled Geometry of multiplex networks, we discuss many of these
examples in detail.

A further example of a type of interacting networks that has recently received a lot
of attention are networks of networks [38]. These are systems where the interaction
between different networks is provided by a network itself. In this thesis, we deal with
a network of networks in chapter 4 in the part titled Evolution and ecology of the digital
world. In particular, we deal with online social networks in different countries that
interact globally. This interaction is provided by a network that encodes the cultural

5Network topology refers to the structural properties of a network, i.e. the arrangement of edges
between nodes.
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Figure 1.2: Relationships between my friends on Facebook. A link exists if two friends of mine
are themselves friends and their profile settings allow me to access their friend
list. Only the largest connected component is shown, i.e. the largest subgraph in
which there exists a path between each pair of nodes that belongs to that subgraph.
The color code represents the betweenness centrality [5], which is a measure of the
number of shortest paths that pass through a certain node (blue is low, red is high).
Node sizes represent degrees above some threshold.

and social proximity between countries. This allows us to model the interaction between
local online social networks and a globally operating one such as Facebook.
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2 Topological evolution of isolated online
social networks

“....when it comes to finding out about new jobs
- or, for that matter, new information, or new ideas -

weak ties are always more important than strong ties.”
Mark Granovetter [39]

This chapter was – with some small changes – published in “Physical Re-
view X” by the American Physical Society under the title “Evolution of
the Digital Society Reveals Balance between Viral and Mass Media Influ-
ence” [40]. A preprint version is available at [41]. Most figures are identical
to the preprint version.

2.1 Introduction

The rapid growth of online social networks (OSNs), like Twitter or Facebook, is re-
shaping the social landscape and changing the way humans interact on a world-wide
scale. Needless to say, social networks existed well before OSNs were even invented.
However, OSNs offer us the unprecedented opportunity to map social interactions at
a scale that was unattainable before the digital era. This has transformed OSNs into
huge sociological laboratories, boosting social sciences up to the level of experimental
sciences. There is, however, an important difference between traditional social networks
and OSNs. Technology-mediated social interactions constitute accelerating phenomena
already observed in conventional social networks. Nevertheless, in the case of OSNs these
take place faster and on a world-wide scale. This is already changing the way companies
try to promote or sell their products with viral marketing campaigns [42–45], the way
influential people, e. g. politicians, interact with their followers in Twitter [46–48], or the
way people self-organize and cooperate in protest movements [49,50], crowdfunding [51],
etc.

Nonetheless, this socio-technological revolution must come along with the development
of new technologies able to sustain its growth. At this respect, one important issue
concerns the design of the basic architecture of current OSNs. The best way to solve
the scalability limitations of OSNs is to replace their centralized architecture by a fully
decentralized one [12]. This can address privacy considerations and improve service
scalability, performance, and fault-tolerance in the presence of an expanding base of
users and applications. However, to accomplish this program successfully, it is necessary

17



2 Topological evolution of isolated online social networks

Slovakia

Pokec

0 20 40 60 80 100

0

20000

40000

60000

80000

Age

T
o
ta
l
n
u
m
b
e
r

Age-specific population coverage

Figure 2.1: Coverage of Pokec users with respect to the whole population of Slovakia.

to take into account the social structure of the underlying society and how it interacts
with the system, a task that involves network, computer, and social sciences.

As a matter of fact, we already have a fairly good knowledge on the topological
properties of the “social graph” among users of OSNs [32,52,53]. Indeed, large datasets
of OSNs have allowed researchers to characterize their topology and to validate many
principles from the social sciences, like the “six degrees of separation” [31, 54–57] by
S. Milgram or the “strength of weak ties” by M. S. Granovetter [58–63]. However, these
results concern static snapshots of the system and, thus, offer little insights into the
fundamental mechanisms leading to the evolution of OSNs. Such insights can only be
obtained from a detailed analysis of the temporal evolution of topologies of OSNs [64–70].
As we shall show, in the case of real OSNs, such temporal evolution follows an intricate
path: an initial phase where the social graph is made of small clusters with increasing
diameter and average degree, followed by a dynamical percolation transition and, finally,
an epoch of increasing average degree and shrinking diameter, akin to the observations
by J. Leskovec, J. Kleinberg, and C. Faloutsos in [71, 72]. Interestingly, this type of
history cannot be explained by standard models of growing networks under preferential
attachment-like mechanisms, thus calling for new fundamental principles.

In the following, we focus on a particularly important case study, the Slovakian OSN
“Pokec” [73]. This network has a combination of unique properties that make it the per-
fect testbed for our purposes, namely, the following: i) It is the most popular friendship-
oriented OSN in the country. ii) Its size represents 25% of the country’s population.
However, a simple demographic analysis of both the country and Pokec users suggests
that, with its current size, it is covering a large fraction of the population susceptible to
ever participate in OSNs. As shown in Fig. 2.1, among the age group of about 20 years
over 90% of individuals are users of the network. iii) The slovak language is mostly spo-
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ken within the country and iv) we can reconstruct its temporal evolution since its birth.
As a result, we have the full history of a quasi-isolated OSN whose final state is also a
good proxy for the underlying offline friendship network. We hypothesize that such un-
derlying social structure is essential for the emergence of OSNs. Under this premise, we
introduce a simple model that incorporates viral dynamics and mass media influence [74]
operating on a multiplex network [75] formed by the on- and offline social graphs. The
model reproduces very well the topological evolution of the Pokec OSN. Nevertheless,
the perfect match is only achieved by introducing into the model the “importance of
weak ties” paradigm, yet another empirical evidence in support of Granovetter’s theory.

2.2 Evolution of the OSN Pokec: An example of a dynamical
percolation transition

2.2.1 The dataset

Pokec is a very large and popular friendship-oriented OSN in Slovakia [73]. By April of
2012, it gathered around 1.6 million users and 30 million directed friendship relations.
Nevertheless, not all directed links correspond to a real social tie: Alice might consider
Bob as her friend while Bob may not have the same consideration for Alice. Thus,
we discard all non-bidirectional links from the original graph and treat those left as
undirected edges. The resulting filtered network is composed of 1.2 million users and 8.3
million bidirectional friendship connections. Interestingly, available users profile data
contains the registration date of all users. Using this information, we can replay the
history of the network topology by assuming that an edge between two users exists at
a certain time if both users exist at that time. This approximation is reasonable due to
observations from e.g. [65], which suggests that most edges are created in a short time
period after the birth of its end nodes.

2.2.2 Dynamical percolation transition

In the inset of Fig. 2.2, we show the temporal evolution of the number of registered users.
We clearly appreciate a sustained monotonous increase, suggesting that the popularity
of Pokec has not diminished even after the onset of Facebook in the year 2004. This
monotonous relation allows us to use the number of current users, N(t), as a measure of
time instead of the physical time t. While this is only a rescaling of the temporal axis, it
makes the comparison with models easier. The main plot in Fig. 2.2 shows the evolution
of the giant connected component (GCC) as a function of the network size. We observe
a behavior that could be interpreted as a dynamical phase transition between a phase
which consists of small disconnected clusters and a percolated phase where a macroscopic
fraction of the network (99% at the end of the evolution) is connected. In percolation
theory, the signature of such continuous transition is encoded in the divergence, at the
critical point, of the susceptibility χ, defined as a measure of the ensemble fluctuations of
the size of the GCC. Unfortunately, this technique cannot be applied in our case as the
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Figure 2.2: Topological evolution of the empiric network. Top: The inset shows the evolution
of the network size from 1999 to 2012. The main plot shows the relative size of
the GCC (blue circles), the size of the second largest component (red squares),
and the average shortest path length (green triangles, multiplied by four for better
readability). Bottom: The largest components of the network are visualized at
three different times, before the critical point, t1, at the critical point, t2, and after
it, t3.

temporal evolution of the Pokec social graph is just one realization of the process. An
alternative of the susceptibility is the size of the second largest connected component1.
This measure is known to diverge at the critical point and, in a single realization of a
finite system, it shows a maximum close to the critical percolation point.

Figure 2.2 shows a clear peak in the size of the second largest connected component,
indicating that, indeed, we are observing a dynamical phase transition. The distribution
of sizes of disconnected components at this point is a power law, another clear indication
of the presence of a continuous phase transition, see Fig. 2.3. In Fig. 2.2, we also show
the behavior of the average shortest path length (ASPL) within the largest connected
component, which shows a quite interesting behavior. During the first stage of the
evolution, the ASPL increases with the network size but its growth is not compatible
with a logarithmic law, as predicted by the small-world effect. Shortly after the critical
point, the ASPL reaches its maximum and then decreases while the size and the average

1Alternatively, one can use the average size of components except the GCC, as we show in appendix B.4
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Figure 2.3: Distribution of component sizes except largest component for the basic model. Top:
N = 1000, middle: N = 10000, bottom: N = 29000. The center row shows the
distribution of sizes near the critical point. One sees that the distribution follows
a power-law which is expected at the critical point of a phase transition.
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degree (see Fig. 2.10 B on page 29) of the network increase. At long times, the ASPL
reaches a value of about five, which is compatible with the small world effect. This
behavior was first observed in [71].

2.3 Basic model: balance between virality and mass media
influence

2.3.1 Model mechanism

Growing network models based on preferential attachment [76] or similar mechanisms [77–
84] were designed to describe systems whose functionality is essentially determined by
their large-scale connectivity, for example the physical Internet, power grid networks,
biological networks, road networks, etc. Consequently, such models do not show dynam-
ical percolation transitions as they generate a giant connected component from the very
beginning of the network evolution, a constant average degree, and an increasing average
shortest path length as a function of the number of nodes. In this type of models, the
pool of new nodes that are added to the system does not have any previous relation with
existing nodes and the connections of newborn nodes to existing nodes are decided exclu-
sively as a function of the current topological state of the network. However, in the case
of friendship-orientated networks, there is a pre-existing underlying offline social network
conditioning the growth of the OSN. Following this line of reasoning, we conjecture that
the observed evolution is the result of a dynamical process that triggers potential users
from the offline social network to subscribe to the OSN. Under this assumption, nearly
all dynamics able to induce the recruitment of all potential users will yield a dynamical
percolation transition. Yet, different dynamics induce different temporal orders in the
evolution of OSNs and, therefore, different topological histories.

Following these ideas, we design a two-layer multiplex model for the evolution of
OSNs. The upper layer represents the online social network whereas the bottom layer
represents the offline social network. The latter can be considered the subgraph of all
a priori susceptible individuals from the aggregation of all social interactions between
individuals. Each individual can be in three different states depending on whether they
are or are not enrolled in the OSN. Susceptible individuals are those not in the OSN
but that might eventually become members of it. Active individuals belong to the OSN
and are actively using it for their social interactions. Passive individuals also belong
to the OSN but are not currently using it to interact with their social contacts, see
Fig. 2.4. The populations of susceptible, active, and passive individuals are governed
by a combination of an epidemic-like process between active users and susceptible or
inactive ones and a mass media effect which equally affects the population of susceptible
individuals. There are four possible events.

1. Viral activation: a susceptible node can be virally activated and added to the
OSN by contact to an active neighbor in the traditional offline network. This
event happens at rate λ per each active link.
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Figure 2.4: Illustration of the two-layer model. The upper layer represents the online social
network and contains the active and passive nodes. The bottom layer corresponds
to the underlying contact network which contains all nodes. The four dynamical
processes are shown in topological illustrations below.

2. Mass media effect: each susceptible individual becomes active spontaneously at
rate µ and is added to the OSN layer as a response to the visibility of the OSN.

3. Deactivation: active users become spontaneously passive at rate δ and no longer
trigger viral activations nor reactivate other passive nodes.

4. Viral reactivation: at rate λ an active user can reactivate a passive neighbor.
The neighbor then becomes active and can trigger both viral activations and viral
reactivations.

We can arbitrarily set δ = 1, which defines the timescale in units of the deactivation
time. The model is then left with two independent parameters, the virality parameter λ
and the mass media parameter µ. Finally, newborn users explore the OSN and connect
to all their neighbors in the traditional offline social network that, at the time of the
subscription, are either active or passive. In appendix B.6 we conduct an experiment
to show that the impact of delayed edge formation can be neglected for reasonable
time scales. The evolution of our model is illustrated in Fig. 2.5 for a small underlying
network.
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Figure 2.5: Illustration of the model dynamics. Time is increasing from top left to bottom
right. Susceptible nodes are marked in blue, red denotes active nodes, and black
are passive ones. At the beginning, the OSN layer (top) is empty. The dynamical
processes described in the text then lead to the subscription of nodes to the OSN.
A video of this sequence is available online [85].
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Figure 2.6: Activity as a function of the viral parameter λ for the limit t → ∞ with the final
snapshot of Pokec as underlying network. λc = 0.02 is the critical point below
which activity is not sustained.

2.4 Relation to SIS model

It is worth to point out that the dynamics between active and passive users is equivalent
to the susceptible-infected-susceptible (SIS) epidemic model [86]. As it happens in the
SIS model, our model also has a critical rate λc below which the number of active users
vanishes whereas above it the activity of the OSN is self-sustained, which is shown in
Fig. 2.6. This makes the model extremely versatile as it can explain the different fates
of OSNs. We also note that a mean field version of this dynamics has been recently and
independently proposed to model users’ activity of OSNs [87].

2.5 Model validation

The viral activation and the mass media effect play complementary roles in terms of their
impact on the topological growth of the network. The mass media effect is very likely
to create new components especially at the beginning of the network evolution whereas
the viral activation leads to the growth of already existing components. The interplay
between these complementary principles is the fingerprint of the evolution of the online
social network and the balance between these mechanisms governs the appearance of the
phase transition. Interestingly, this allows us to precisely quantify this balance, which
we will show and discuss later.

Unfortunately, the rigorous validation of the model requires the precise knowledge of
the topology of the underlying social network. However, in the particular case of the
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Figure 2.7: Model validation by reproduction of the empirical evolution with the final snapshot
of Pokec as the underlying network in our model.

Pokec network, its large coverage among the subgraph of potential users (see Fig. 2.1)
suggests that we can consider the final snapshot of the Pokec OSN as a good proxy for
the real underlying social network. As shown in Fig. 2.7, we take the final snapshot of
the empirical network as the underlying layer in our model. Following this approach,
we perform extensive numerical simulations of our model and compare the resulting
evolution with the one we observe in the Pokec OSN. Of course, the real evolution of
the Pokec network is still ongoing and, thus, we expect this approximation to fail as we
approach the final size of the network. In particular, we do not expect the model to
reproduce the network growth in physical time because as the model approaches the size
of the empirical network a saturation process aparently slows down the dynamics. We
deal with this problem by using the network size instead of physical time as the measure
of the course of the evolution, which allows us to compare the topology of the model and
the empirical network despite its ongoing evolution. This corresponds to dynamically
rescaling λ, µ and δ in the same way at each timestep. Hence, the transformation
preserves the fraction λ/µ which we discuss in terms of the balance between virality and
mass media influence in the following.

2.5.1 Quantifying the balance between virality and mass media influence

The results of our model show the emergence of a dynamical phase transition from a dis-
connected to a connected state, in agreement with the empirical observations described
earlier. The position of the critical point is related to the parameters λ and µ. For
fixed λ, increasing µ leads to the creation of more new disconnected components while
the rate at which they are merged by the viral mechanism is kept constant, hence the
phase transition occurs at larger system sizes. Higher λ however increases the system’s
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Figure 2.8: The color density plot represents the network size at the critical point for the
respective parameters λ and µ. For constant λ, an increase of µ leads to a later
transition (blue area) whereas for constant µ one observes an earlier transition (red
area) for higher values of λ. The solid black line indicates the virality mass media
line corresponding to the critical size of Pokec (NP

c = 10600). The dashed green
line shows a linear fit in the region above the sustained activity threshold λc = 0.02
(see Fig. 2.6) corresponding to µ(λ) = (0.25± 0.01)λ.

tendency to connect previously disconnected components, which leads to an earlier tran-
sition. We take advantage of the uniqueness of the critical point to adjust the parameters
of the model by matching the network size of the model and the empirical network at
the transition point. To this end, we compute the critical size for different values of the
parameters λ and µ, as shown in Fig. 2.8. In the empirical network, the phase transition
occurs at NP

c = 10600, which is represented by the black line in the plot. The green
dashed line shows a linear fit according to

µ(λ) = (0.25± 0.01)λ . (2.1)

The virality mass media line given by Eq. (2.1) quantifies the balance between the
importance of the viral effect and the mass media effect for the evolution of the network.
At the light of this result, we conclude that the viral effect is about four times stronger
than the mass media effect. In other words, in the particular case of the Pokec OSN, it
is four times more likely to subscribe to the network as a result of the invitation of one
active friend than as the result of the information about the network available through
the mass media. However, Eq. (2.1) only holds above a critical value of the virality
parameter λ > λc, which corresponds to the critical threshold for the self-sustained
activity of the network. This threshold is at λc ≈ 0.02. Below this limit, the virality
mass media line bends downwards and, in the limit of λ → 0, it is not possible to
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Figure 2.9: Comparison of model and Pokec network evolution. Top: The symbols represent
the empirical data, whereas the solid lines correspond to the results from the model
averaged over 100 realizations with λ = 0.03 and µ = 0.008. Points correspond
to the empiric network and lines represent the results from the model. Bottom:
Snapshots of the topology of the model at different times similar to Fig. 2.2.

match the position of the critical size (see appendix B.1). This implies that both virality
and mass media influence are necessary and complementary mechanisms to explain the
topological evolution of OSNs.

2.5.2 Evolution of the network topology: comparison with data

In the active phase, that is λ > λc as shown in Fig. 2.6, the effect of changing the
value of λ is very mild if the relation Eq. (2.1) is preserved. In our case, we choose the
value of λ that best reproduces the evolution of the number of disconnected components
(Fig. 2.10 A) and obtain the corresponding µ from Eq. (2.1). We then compare the results
of the model with the empirical evolution of the Pokec OSN in Fig. 2.9. Interestingly,
our two parameters model is able to reproduce the entire evolution of the network with
an impressive precision for all measured global topological properties, such as the size of
the giant component, the ASPL, and the size of the second largest connected component,
see Fig. 2.9. However, the model is not able to reproduce the temporal trends of local
quantities like the mean local clustering and assortativity coefficients, as shown in Figs.
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Figure 2.10: Topological evolution of the empiric network (blue circles), the basic model (red
dashed lines), and the extended model (green lines). A: Evolution of the number
of components of size s > 1. B: The evolution of the mean degree shows a
densification of the network. C: The assortativity coefficient as defined in [5].
D: The evolution of the mean local clustering coefficient (of nodes with k > 1)
exhibits an essential difference between the basic model (red dashed line) and the
extended model with η = −0.65 (green line).

2.10 C and D. The clustering coefficient of the Pokec OSN steadily increases since the
beginning of the evolution whereas the model exhibits first a sudden increase followed
by a decreasing clustering coefficient. The assortativity coefficient fluctuates both in
the model and in the empiric network, although its value in the model is about three
times higher. This disagreement suggests that a local mechanism must be incorporated
to reproduce simultaneously the global and local evolution of the network topology. In
the next section, we present an extended version of our model which takes into account
the overlap of each node’s neighborhood, with interesting implications concerning the
“strength of weak ties” paradigm.

2.6 Extended model: the strength of social ties
2.6.1 Overlapping neighborhood and strength of social ties
The viral activation mechanism of our model is completely blind to the network topol-
ogy, that is, active users try to “infect” all their neighbors with the same probability.
As a consequence, the model performs well at reproducing the evolution of the global
topological quantities but it fails at reproducing trends in local quantities, like the clus-
tering coefficient. However, according to Granovetter [58], the diffusion of information
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i j

Figure 2.11: Illustration of the multiplicity mij in Eq. (2.2). The edge between i and j partic-
ipates in four triangles, which are marked in orange. Hence, mij = 4.

through a social tie is different depending on whether the tie is “strong” or “weak”. Fol-
lowing Granovetter’s idea, we use the overlap of two individuals’ friendship network as
a measure of the strength of their tie [58]. In particular, given an edge connecting users
i and j, we define its social strength as

sij ≡ (mij + 1), (2.2)

where mij counts the number of triangles going through the edge or, equivalently, the
number of common neighbors of the two users. mij is called the multiplicity of the edge
i↔ j, which is illustrated in Fig. 2.11.

Our previous model can now be easily extended to account for the strength of social
ties. We assume that viral activation and reactivation through the edge i ↔ j is given
by

λij = λ
sηij
〈sη〉

, (2.3)

where 〈·〉 denotes the global average over the whole network. In this way, the parameter
λ has the same interpretation as in the basic model. The transmissibility-strength coef-
ficient η represents the relationship between the viral transmissibility and the strength
of the social tie. For η > 0, viral transmissibility is proportional to the strength of social
ties, which puts special emphasis on the strong ties for viral spreading. Instead, for
η < 0, high viral transmissibilities are assigned to edges with low multiplicities, which
tend to act like connectors between different clustered groups (see Fig. 2.12). In the
case of η = 0, we have λij = λ and we recover the basic model discussed in the previous
section.

2.6.2 Quantifying the transmissibility-strength relationship
We quantify the transmissibility-strength coefficient η by comparing the evolution of the
mean local clustering coefficient in the Pokec OSN with results from the extended model.
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A B

Figure 2.12: A: Illustration of the strength of social ties defined by Eq. (2.2). B: Illustration
of viral transmissibilities for negative η defined by Eq. (2.3).

Figure 2.10 D shows that the clustering coefficient of the Pokec OSN grows approximately
linearly with the logarithm of the network size. Thus, we interpolate the evolution of
the clustering coefficient of our model for different values of η and compare the obtained
slopes with the empirical one, as shown in Fig. 2.13. The extended model exhibits an
increasing clustering coefficient for η < −0.2 and the best match with the Pokec OSN
is achieved at the value of η = −0.65 (see Fig. 2.13), which is, remarkably, a negative
value. This is yet another empirical proof of Granovetter’s theory on the importance of
weak ties in processes of diffusion of information in social networks [58]. An alternative
empirical validation of the same principle was provided in [63], where it was found that
the probability of accepting an invitation to join an OSN is not proportional to the
number of social contacts of the invited individual but to the number of different social
contexts –the structural diversity– within the individual’s life. Notice that a similar
effect is achieved in our model when the exponent η is negative. Indeed, suppose that
a user has a subset of k contacts forming a “strong” context, that is, these k contacts
are all connected among them. This implies that the multiplicity of each link between
our user and his/her k contacts is m = k − 1. Suppose now that η = −1, then the
aggregated infectivity according to Eq. (2.3) is proportional to k/(m + 1) =constant,
which is precisely the main result in [63].

2.6.3 Topological evolution of the extended model

The introduction of weighted transmissibilities in our model does not affect significantly
the evolution of the global topological properties. The evolution of the GCC, the size of
the second largest connected component, and the average shortest pathlength exhibit a
similar trend as in the basic model, as shown in Fig. 2.14.

For the empirical transmissibility, η = −0.65, the virality mass media line behaves like
in the basic model with the difference that now the relation between λ and µ is

µ(λ) ≈ (0.21± 0.01)λ (2.4)

as shown in Fig. 2.15.
In Fig. 2.10, we show results for the number of components, the mean degree, the

assortativity coefficient, and the mean local clustering, which are all in very good agree-
ment with their empirical counterparts.
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Figure 2.13: A: Evolution of the mean local clustering coefficient for different values of η from
−0.85 to 0.2. The lines correspond to model results for different η and the sym-
bols represent the evolution from the empiric network. We set λ = 0.03 and
µ = 0.006. B: Slopes of the evolution of the mean local clustering coefficient for
different values of the transmissibility-strength coefficient. The dashed line rep-
resents the slope of the clustering evolution of the Pokec network. The empirical
transmissibility-strength coefficient η = −0.65 is given by the intersection of this
line with the curve representing the model results.

To conclude, the strength of social ties has to be taken into account to correctly
describe the evolution of the local topology. Interestingly, however, its impact on the
global organization of the network is rather small.

2.7 Summary: Topological evolution of isolated online social
networks

Comprehensive datasets on the evolution of OSNs offer us the opportunity to determine
the principal mechanisms involved in social contagion and online activity of individuals.
At this respect, the OSN Pokec, with its peculiar evolution and being almost isolated, is
particularly appropriate. Interestingly, the evolution of Pokec’s topology is characterized
by a dynamical percolation transition, a rather peculiar behavior in real evolving net-
works. We have shown that this anomalous topological evolution can be explained very
precisely on a quantitative level by a two-layer model, which accounts for the underlying
real social structure, combined with two main mechanisms. First, a viral effect, respon-
sible for the social contagion of new users and, second, a mass media effect, leading to
random subscriptions of new users. Interestingly, the balance between these two mecha-
nisms is what governs the topological growth of OSNs. In the particular case of the OSN
Pokec, the quantification of this balance tells us that the viral effect is between four to
five times stronger than the mass media effect. This can explain the proliferation of vi-
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Figure 2.14: GCC (blue), size of second largest component (red), and average shortest path
length (green) for the extended model for the parameters η = −0.65, λ = 0.03,
and µ = 0.006.

ral marketing campaigns, in detriment of traditional advertising [42]. To our knowledge
for the first time a model with only very few parameters yields quantitatively precise
insights about the topological formation of OSNs. This makes our model a necessary
foundation for the development of next generation online social networking services.

Beyond the global behavior of our basic model, the social neighborhood of individuals
has shown to be crucial to explain the evolution of local topological quantities in Pokec.
We find that viral transmissibility is inversely proportional to the strength of social
ties. This result is particularly interesting as it corroborates recent empirical findings
concerning the role of “structural diversity” on social contagion processes by analyzing
email invitations from Facebook users [63]. However, our model allows us to identify and
quantify this effect exclusively from –and hence its impact on– the topological evolution
of the OSN. Alongside with Granovetter’s conclusion about the importance of weak
ties for individual success, our results give rise to the interpretation that OSNs evolve
in a way to improve the possibilities for individual success. This might constitute an
important reason for the huge popularity of OSNs.

Our findings here suggest interesting future research lines. Indeed, the particular OSN
analyzed here is a quasi-isolated system and, thus, allows us to gauge the fundamental
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2 Topological evolution of isolated online social networks

Figure 2.15: Matching of the critical point for the extended model for η = −0.65. The color
density plot represents the network size at the critical point for the respective
parameters λ and µ. For constant λ, an increase of µ leads to a later transition
(blue area) whereas for constant µ one observes an earlier transition (red area)
for higher values of λ. The solid black line indicates the virality mass media line
corresponding to the critical size of Pokec (NP

c = 10600). The dashed green line
shows a linear fit corresponding to µ(λ) = (0.21± 0.01)λ.

mechanisms at play in the evolution of OSNs. However, in a general situation, an entire
ecosystem of OSNs operate simultaneously, competing for the same users, which now
become a scarce resource. In the following chapter, we will introduce competition among
OSNs into our model which opens the possibility to develop an ecological theory of the
digital world.
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3 Digital ecology

“Just as a monopoly in economy is a threat to free markets, the lack
of digital diversity poses a threat to the freedom of information.”

Ecology 2.0 [88]

This chapter was – with some small changes – published in “Scientific
Reports” by Nature Publishing Group under the title “Digital Ecology: Co-
existence and Domination among Interacting Networks” [89]. A preprint
version is available at [90]. Most figures are identical to the preprint version.

3.1 Introduction

In the previous chapter we have studied the topological evolution of online social net-
works in an isolated environment and were able to identify the main mechanisms re-
sponsible for the evolution of quasi-isolated OSNs. However, most OSNs operate on a
worldwide scale and are in constant competition for users’ attention with numerous other
services; a fact that makes it extremely challenging to model them. This competitive
environment leads to the extinction of some networks, while others persist. This phe-
nomenon suggests an ecological perspective on the interaction of multiple OSNs, from
which networks are considered to form a complex digital ecosystem of interacting species
that compete for the same resource: users’ networking time.

In standard ecology theory, Gause’s law of competitive exclusion [91] states that un-
der constant environmental conditions, two species in competition for the same resource
cannot coexist. This is because even the slightest advantage of one species over the
others is amplified and eventually leads to the domination of this species. This mecha-
nism is often referred to as rich-get-richer. Competitive exclusion is predicted by many
theoretical models [92]. However, many observations of natural ecosystems seem to con-
tradict Gause’s law, as in the case of the famous plankton paradox [93]. Attempts to
solve such paradoxes include the assumption of different roles (competition–colonization
trade off [94, 95]), the increase of the dimension of the systems, the inclusion of further
species properties, etc. (see [96] and references within). However, such models allow
for an unlimited number of coexisting species, which thereby creates a new paradox.
Indeed, real ecosystems usually consist of a moderate number of coexisting species. In
this chapter, we show that the coexistence of networks that are in competition for the
same resource, namely our society’s networking time, is possible. Furthermore, our
work predicts that the most probable outcome is the coexistence of a moderate number
of networks.
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Recent work [97] showed that the competition between Facebook and its competitors
such as MySpace in the mid 2000s led to the extinction of Facebook’s competitors and its
own prevalence. However, the current existence of a large number of OSNs [98] suggests
that the coexistence of multiple networks is indeed possible. This could be explained by
analogy with the competition–colonization trade-off mentioned earlier, if we assume that
different networks compete for different peer groups and hence one network can persist
in each of these groups. Although the existence of different peer groups is certainly the
case in reality1, our aim in this chapter is to introduce a general and concise theory
for competition between identical networks that are in competition for the same set
of potential users that allows either the coexistence of any number of networks or the
domination of a single network.

We show that the coexistence of competing networks can indeed be modeled by al-
lowing for the interplay of two very common mechanisms: preferential attachment and
diminishing returns. Preferential attachment [76–84] is a fundamental principle that can
be applied to growing networks and which states that newborn nodes are most likely to
connect to the more popular nodes; this leads to a rich-get-richer effect. The principle of
diminishing returns—or diminishing marginal returns—is widely used in economic theo-
ries and refers to the negative curvature of production functions. For example, suppose
that sowing 1 kilogram of seed in a certain place yields a crop of one ton. However,
2 kilograms of seed produces only 1.5 tons of crop; and 3 kilograms of seed produces
1.75 tons of crop. Thus, the marginal return per increment of seed diminishes with the
increasing amount of seed used.

In this chapter, we demonstrate the following three points. First, multiple networks
can coexist in a certain parameter region due to the interplay of a rich-get-richer mecha-
nism and diminishing returns in the dynamics of the evolution of the networks. Second,
we are most likely to observe only a moderate number of coexisting services. Finally,
third, the influence of the mass media controls the observed diversity in the digital
ecosystem.

3.2 From quasi-isolated online social networks to interacting
networks

Suppose now that, instead of a single network as in the previous chapter, there are
nl networks competing for the same set of potential users. Each user can be active
or passive in several networks simultaneously, as represented in Fig. 3.1, such that the
long-term evolution of the fraction of active users in each layer determines the fate of
the system: either several networks coexist or only a single network prevails. The first
key point in the generalization of the model introduced in the previous chapter concerns
the role of the viral parameter λ. This parameter is a proxy for users’ engagement in
online activities, such as inviting their friends to participate in the network, generating or
forwarding content, etc. However, such activities require users to spend a given amount

1We will discuss the influence of different sets of susceptible individuals in the following chapter.
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Figure 3.1: Multiplex layout of two online social network layers. The bottom layer represents
the underlying social structure and the remaining layers represent each OSN.

of their time on them and their time is, obviously, bounded. This implies that when users
are simultaneously active in two or more different networks or services, they are forced to
decide the amount of time they devote to each of them. We model this effect by assuming
that the viral parameter for each layer is λi = λωi, where ωi a set of normalized weights
(that is,

∑nl
i=1 ωi = 1) that quantify users’ engagement with each OSN. In this way,∑nl

i=1 λi = λ is a conserved quantity related to the physical and cognitive limitations of
users. The second key point in our generalization concerns the dependence of the share,
λi, of the total amount of virality for individual networks on the state of activity of the
whole system, which is defined by the vector: ρa = (ρa1, ρa2, · · · , ρanl)

T. We assume that
the weights ωi are functions of ρa that obey the following two conditions:

1. Symmetry: All networks are considered intrinsically equal. Therefore, the weight
functions must satisfy the symmetry conditions:

ωi(·, ρai , · · · , ρaj , ·) = ωj(·, ρaj , · · · , ρai , ·)
ωi(·, ρaj , · · · , ρak, ·) = ωi(·, ρak, · · · , ρaj , ·),

for any i, j, and k. This implies that when the fraction of active users is the same
in all of them, the viral parameters λi must also be equal in each network and,
therefore, ωi = 1/nl ∀i.

2. Preferential attachment: We assume that users are in general more likely to sub-
scribe to and participate in more active networks. Hence, the weight of a given
network i must be a monotonically increasing function of ρai . Following the same
line of reasoning, we also assume that a network with zero activity is not functional,
so that ωi(ρai = 0) = 0.

Finally, consistent with our findings in the previous chapter, we assume a linear relation
between µi and λi,

µi = λi
ν

= λωi(ρa)
ν

, (3.1)
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where ν denotes the relative strength of the viral effect with respect to the influence of
mass media, for which we found in the previous chapter that ν ≈ 4 ∼ 5).

These conditions can be interpreted as coarse-grained preferential attachment in the
bipartite graph consisting of users and networks. Users are in general more prone to
connect to networks which exhibit higher activity and, once active in more than one net-
work, they are also more inclined to engage with the most active one more often. Notice
that we are introducing a feedback loop between the global dynamics of the system and
the microscopic parameters λi. We are thus assuming that users are, somehow, able to
sense the global activity of the system. This can be achieved in practice as a combina-
tion of the amounts of information that users receive from: the network itself [99–101],
global media, the traditional offline social network, etc. Although preferential attach-
ment induces a rich-get-richer mechanism, in what follows we show that the interplay
of this mechanism with the dynamics of the networks leads to the emergence of stable
coexistence of multiple networks across a certain parameter region.

3.3 Meanfield approximation
The effects of complex topologies on epidemic-like spreading processes are well under-
stood nowadays and cannot be ignored. However, the dynamics of our model is rich and
complex enough on its own to be analyzed in isolation. Therefore, in this section we
perform a meanfield analysis which provides important insight into the emergence and
stability of a state of coexistence of multiple networks. In particular, we replace the real
social contact network by a fully mixed population with an average number of contacts
per user 〈k〉. Section 3.4 contains numerical simulations of our dynamics using a real
social network [40,73]. We can confirm in advance that the general picture drawn in this
section is also observed in the real system.

3.3.1 One-dimensional dynamics
For one network, the system is described by the following meanfield equations

ρ̇a = λ 〈k〉 ρsρa︸ ︷︷ ︸
Viral activations

+ λ 〈k〉 ρaρp︸ ︷︷ ︸
Reactivations

+ µρs︸︷︷︸
Mass media

− δρa︸︷︷︸
Deactivations

ρ̇p = − λ 〈k〉 ρpρa︸ ︷︷ ︸
Reactivations

+ δρa︸︷︷︸
Deactivations

ρ̇s = −µρs︸ ︷︷ ︸
Mass media

− λ 〈k〉 ρsρa︸ ︷︷ ︸
Viral activations

.

(3.2)

The nontrivial steady-state solution is ρs = 0 and ρa = 1− δ/λ〈k〉, which is stable only
when λ ≥ δ/〈k〉 ≡ λ1

c . This defines the critical value of λ below which activity is not
possible, even in a single network. In the following, we assume that λ > λ1

c so that, even
if coexistence is not possible, at least one network is always able to survive. Likewise,
we also fix the timescale of our model by setting δ = 1 from now on as we did in the
previous chapter.
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3.3.2 Multiple competing networks

In the case of an arbitrary number of OSNs, the system is characterized by the fraction
of active and passive users in each layer, ρai and ρpi , and the fraction of individuals in
the traditional offline social network that are susceptible to subscription in network i:
ρsi . We assume that the densities of active/passive/susceptible nodes are not correlated
between different OSNs. Thus, the evolution equations in the meanfield approximation
for the i-th layer are

ρ̇ai = ρai

{
λ 〈k〉ωi(ρa) [1− ρai ]− 1

}
+λ

ν
ωi(ρa)ρsi

ρ̇si = −λ
ν
ωi(ρa)ρsi

{
1 + ν 〈k〉 ρai

}
,

(3.3)

where we have used ρpi = 1− ρai − ρsi . Note that the coupling between different OSNs is
encoded in the weights, ωi(ρa).

3.3.3 Stationary solution

The stationary solution of Eqs. (3.3) that corresponds to the complete coexistence of all
the nl networks is given by

ρa∗i = 1− nl
λ〈k〉

and ρs∗i = 0, ∀i (3.4)

for λ > λnlc ≡ nl
〈k〉 . This again defines a critical threshold for λ below which com-

plete coexistence is impossible. At the opposite extreme, the stationary solution for the
prevalence of just one single network, j, is

ρaj = 1− 1
λ〈k〉

and ρsj = 0,

ρai = 0 and ρsi = const ∀i 6= j,

(3.5)

for λ > λ1
c . It is easy to see that this last solution is always stable when λ > λ1

c . However,
the stability of the coexistence solution depends, in general, on the particular form of
the weights ωi(ρa).

3.3.4 Stability

To investigate the stability of the stationary solution, we analyze the Jacobian matrix
of the dynamical system defined in Eqs. (3.3) whose entries correspond to the following
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derivatives
∂ρ̇ai
∂ρaj

∣∣∣∣∣
ρ∗

= ρa∗i nl
∂ωi(ρa)
∂ρaj

∣∣∣∣∣
ρ∗

− δij
ρa∗i

1− ρa∗i
∂ρ̇ai
∂ρsj

∣∣∣∣∣
ρ∗

= δij
λ

νnl

∂ρ̇si
∂ρaj

∣∣∣∣∣
ρ∗

= 0

∂ρ̇si
∂ρsj

∣∣∣∣∣
ρ∗

= −δij

[
λ

νnl
+ ρa∗i

1− ρa∗i

]
.

(3.6)

The Jacobian matrix (of dimension 2nl × 2nl) can be written as

J =
(
Ma,a Ma,s

Ms,a Ms,s

)
(3.7)

where Mη,θ represent nl × nl matrices with the following elements

Mη,θ(i, j) = ∂ρ̇ηi
∂ρθj

∣∣∣∣∣
ρ∗

. (3.8)

The matrixMs,s is a diagonal matrix with all its diagonal equal to d = −
[
λ
νnl

+ ρa∗i
1−ρa∗i

]
<

0. Ma,s is also a diagonal matrix with all its diagonal elements equal to some value c
and finally Ms,a has all its elements equal to 0.

By using the Laplace expansion starting from the 2nl, 2nl entry and expanding row-
wise, one finds after nl iterations that

det [J − ΛI] = (d− Λ)nl det [Ma,a − ΛI] , (3.9)

which means we have the eigenvalues Λnl+1,...,2nl = d with degeneracy nl and the remain-
ing eigenvalues are those of Ma,a. Because d < 0, this means that the stability of the
coexistence solution is exclusively determined by the dynamics in the limit ν →∞, which
reduces the dimensionality of the system from 2nl to nl and decouples the dynamics of
ρai from ρsi .

The matrix Ma,a has the form

Ma,a =


α β · · · β
β α · · · β
...

... . . . ...
β β · · · α

 (3.10)

and its eigenvalues are Λ1 = α+ (nl − 1)β and Λ2,...,nl = (α− β), which has degeneracy
nl − 1. We have

α = ρa∗i nl
∂ωi(ρa)
∂ρai

∣∣∣∣∣
ρ∗

− ρa∗i
1− ρa∗i

(3.11)
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and
β = ρa∗i nl

∂ωi(ρa)
∂ρaj

∣∣∣∣∣
ρ∗

= −ρa∗i
nl

nl − 1
∂ωi(ρa)
∂ρai

∣∣∣∣∣
ρ∗

(3.12)

(here we used
∑
j ωj = 1, hence ∂ωi

∂ρaj
|i 6=j = − 1

nl−1
∂ωi
∂ρai

). From here, one obtains the result
that Λ1 is always negative and the stability is controlled by the eigenvalues Λ2,...,nl , which
are

Λ2,...,nl = α− β = ∂ωi(ρa)
∂ρai

∣∣∣∣∣
ρ∗

ρa∗i
n2
l

nl − 1 −
ρa∗i

1− ρa∗i
, (3.13)

which have to be negative to satisfy stable coexistence. The coexistence state is stable
if Λ2,...,nl < 0, which leads to the condition

φ(ρa∗i ) ≡ n2
l

nl − 1(1− ρa∗i ) ∂ωi(ρ
a)

∂ρai

∣∣∣∣∣
ρa∗

< 1 . (3.14)

3.3.5 Interplay between preferential attachment and diminishing returns
We have evaluated the stability of the system in the coexistence state by analyzing the
Jacobian matrix earlier. Here, we show that the emergence of stable coexistence can be
understood as the interplay between preferential attachment and diminishing returns.
Preferential attachment affords an advantage in terms of respective weight, ωi, for net-
works which already exhibit higher activity; inducing a rich-get-richer effect. However,
this is damped by the intrinsic dynamics of the system, which exhibits diminishing re-
turns in terms of activity with respect to an enhancement of the corresponding weight
ωi. As long as the preferential attachment mechanism is not strong enough to overcome
this damping effect, any perturbation in the density of active nodes near the coexistence
point will eventually decline. Hence, the coexistence is stable. From a mathematical
point of view, this is equivalent to showing that, at the coexistence point, the function
φ(ρa∗i ) is proportional to the dynamical return of the system when network i is perturbed.
In other words, if the activity of network i is externally increased by a small amount
∆ρai , after some relaxation time, the dynamics brings the perturbation to the new value
∆ρ̃ai = φ(ρa∗i )∆ρai . Coexistence is stable whenever the dynamical perturbation ∆ρ̃ai is
smaller than the external one ∆ρai , which is explained in the following.

Here, we discuss the response of the system to a small perturbation, ∆ρai , of the
activity of one network. In the limit n� 1, we can neglect the effect of perturbing the i-
th network on the remaining ones. The perturbation induces a shift in the corresponding
weight according to

∆ωi ≈
∂ωi
∂ρai

∣∣∣∣∣
ρa∗

∆ρai . (3.15)

Our initial perturbation triggers the dynamical response ∆ρ̃ from the system given by

∆ρ̃ai = ∂ρa∗i (ωi)
∂ωi

∣∣∣∣
ωi= 1

nl

∆ωi , (3.16)
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where ρa∗i (ωi) = 1− 1/λ〈k〉ωi. With Eq. (3.15), we obtain

∆ρ̃ai = nl(1− ρa∗i ) ∂ωi
∂ρai

∣∣∣∣∣
ρa∗

∆ρai . (3.17)

The coexistence solution is stable if the perturbation decreases; this means that the
dynamical response ∆ρ̃ai has to be smaller than the initial perturbation ∆ρai . Mathe-
matically, this leads to the condition

nl(1− ρa∗i ) ∂ωi
∂ρai

∣∣∣∣∣
ρa∗

< 1 , (3.18)

which is equivalent to Eq. (3.14) from the previous section in the limit nl � 1. The
left-hand side of Eq. (3.18) is proportional the ratio between the dynamical response
of the system and the initial perturbation. If this ratio is smaller than one, the initial
perturbation will decrease and the coexistence state is stable.

3.3.6 Existence of stable coexistence states
It is possible to see that φ(ρa∗i ) diverges at ρa∗i = 0 and is zero when ρa∗i = 1, and
thus there is always a value of λ above which the inequality (3.14) is fulfilled. Our
assumptions of symmetry and normalization allow us to write

ωi(ρa) = ψ(ρai )∑nl
j=1 ψ(ρaj )

(3.19)

where ψ(ρai ) is an arbitrary monotonically increasing function with ψ(0) = 0, which is
bounded on the interval [0, 1]. We have

∂ωi
∂ρi

∣∣∣∣
ρa∗

= ψ′(ρa∗i )
ψ(ρa∗i )

nl − 1
n2
l

, (3.20)

which we can plug into Eq. (3.14) to obtain

φ(ρa∗i ) ≡ (1− ρa∗i )ψ
′(ρa∗i )
ψ(ρa∗i ) < 1 . (3.21)

Since ψ(0) = 0 and ψ′(0) 6= ψ(0), the left-hand side of Eq. (3.21) diverges for ρa∗i → 0.
Because ψ is bounded, we have

lim
ρa∗i →1

φ(ρa∗i ) = 0 . (3.22)

Therefore, there is always a ρa∗i (and so a value of λ) for which the inequality (3.21) is
fulfilled.

Interestingly, a series of states of partial coexistence exist between the complete co-
existence state and the prevalence of a single network, such that only a number nc < nl
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Figure 3.2: Regions of maximal possible coexistence in the meanfield approximation as a func-
tion of λ and σ for 5 networks evaluated from Eq. (3.24).

of OSNs coexist simultaneously. The symmetries of the weights ωi(ρa) imply that any
such case is exactly the same as the complete coexistence state if we replace nl by nc
in Eqs. (3.4) and (3.14). Finally, we recall that the stability of the partial or complete
coexistence solutions is independent of the value of ν (see Sec. 3.3.4). Therefore, we
can discuss the stability in the limit ν → ∞, which reduces the dimensionality of the
dynamical system.

As mentioned earlier, the symmetry and preferential attachment conditions of the
weights ωi(ρa) combined with the normalization condition imply that, without loss of
generality, ωi(ρa) can be written as

ωi(ρa) = ψ(ρai )∑nl
j=1 ψ(ρaj )

, (3.23)

where ψ can be any monotonically increasing function bounded on [0, 1] with ψ(0) = 0.
To gain further insight, we consider the following form of function ψ(ρai ) = [ρai ]

σ. By
adjusting a single parameter this form allows us to describe a system between a set of
decoupled networks, when σ = 0, and very strongly coupled ones, when σ � 0. In this
particular case, the stability condition of the coexistence state of nc networks is given
by

σ <
λ− λncc
λncc

with nc = 2, · · · , nl . (3.24)

This inequality defines a set of nl − 1 critical lines σc(λ;nc) in the plane (λ, σ) that
separate phases with nc and nc − 1 maximally coexisting networks. This is illustrated
in Fig. 3.2 for the case of nl = 5 competing networks.
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Figure 3.3: Meanfield approximation in the limit ν → ∞ (this reduces the system dimension
from 4 to 2 and allows the diagram to be plotted, see Sec. 3.3.4). Top: Left:
Stable coexistence solution (λ/λ1

c = 4, σ = 0.8). The basin of attraction for the
coexistence solution is marked in blue. Right: Only the domination solution is
stable (λ/λ1

c = 4, σ = 1.2). Bottom: Bifurcation diagram for two OSN layers
showing subcritical pitchfork bifurcation at σ = σc for λ/λ1

c = 4. The inset shows
the hysteresis induced by this type of bifurcation.
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However, the stability of the coexistence solution does not guarantee that it is reached
from arbitrary initial conditions because, as we show above, there are several other stable
fixed points, each with its own basin of attraction. This is illustrated in Fig. 3.3, where
we show the vector field in the plane (ρa1, ρa2) for the case of two competing networks in the
limit ν →∞. For any fixed value of λ > λ2

c and σ > σc(λ; 2), the coexistence solution is
an unstable saddle point. This implies that one of the networks will eventually prevail,
independently of the initial conditions (Fig. 3.3 top right). At the critical point σ =
σc(λ; 2), the system undergoes a subcritical pitchfork bifurcation with the appearance of
two unstable saddle points moving away from the (now stable) coexistence solution as σ
is decreased (Fig. 3.3 top left and bottom). The subcritical character of the bifurcation
is akin to first-order phase transitions. Indeed, an infinitesimal increase in the value of σ
near the critical point makes the system jump from stable coexistence to the domination
of one of the networks. Decreasing the value of σ afterwards does not bring the system
back into the coexistence state, as this type of bifurcation implies a hysteresis effect,
as shown in the inset of Fig. 3.3. This behavior is particularly interesting as it implies
that digital diversity – once lost – cannot be recovered without fluctuations in the order
of the size of the system. The two saddle points that emerge below the critical line
determine the basin of attraction of the coexistence solution. This basin (depicted in
blue in the top left plot of Fig. 3.3) is very narrow for low densities of active nodes, as
found at the beginning of the evolution. This makes the system sensitive to stochastic
fluctuations; a small perturbation of the initial conditions may push the system into a
state of domination of one network. We finally note that, in contrast to other nonlinear
models of population dynamics, our system does not exhibit limit cycles.

3.4 Numerical simulations

3.4.1 Real-world topology

The analysis presented in the previous section is based on two strong and unrealistic
assumptions: the fully mixed hypothesis of the underlying offline social network and
the absence of fluctuations in the densities of active users. The first assumption has a
strong impact on the value of the critical threshold λ1

c and the fraction of active users
in a single network when λ > λ1

c . Fluctuations have an important impact mainly at the
beginning of the evolution, when the number of active users is small, which is when the
finite system size becomes especially relevant. Such fluctuations can induce the system
to change stochastically from one basin of attraction to another, leading the system to
different steady states—either coexistence or domination—even if it starts from the same
initial configuration with identical parameters. Once the system is in the coexistence
state and has approached its full size, the relative importance of fluctuations decreases as
the expected time for the system to jump out of the basin of attraction of the coexistence
solution due to fluctuations diverges exponentially with the system size. To understand
the effects of the above assumptions within a real scenario, we performed large-scale
numerical simulations of our model on a real social network, the Slovakian friendship-
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Figure 3.4: Stability regions for the full stochastic model with a real underlying topology. The
inset shows nc versus the inverse slope of linear fits to the respective lines.

oriented OSN Pokec [40, 73] in 2012, which we have analyzed in the previous chapter.
We recall that the size of this network (1.2×106 users) represents 25% of the population
of Slovakia but demographic analysis shows that it covers a much larger fraction of the
population susceptible to ever participate in OSNs (see Fig. 2.1 on page 18). This makes
Pokec a very good proxy of the underlying social structure.

3.4.2 Empirical stability

We first study the coexistence space in the plane (σ, λ) in the case nl = 5. To do so, for
each value of λ and σ we first set the system to the coexistence solution ρa∗. We then
apply a small positive perturbation to one of the networks ρa∗1 → ρa∗1 +δρa1. The evolution
of the system after this perturbation can be used to determine the stability of the
coexistence state (see appendix C.1 for details). The results are shown in Fig. 3.4. Even
though the position of the critical point of a single network λ1

c of the real Pokec network
is extremely different from the meanfield prediction, the critical lines as a function of
the ratio λ/λ1

c follow a linear trend, as in the meanfield prediction. Interestingly, the
slopes of these lines (although they are different from those in the meanfield case) scale
with nl in the same way as in the meanfield case (see the inset in Fig. 3.4).

3.4.3 Reachability

The stability of the coexistence solution per se does not guarantee that coexistence is
reached from any initial configuration. This is particularly relevant when the evolution
starts from empty networks, as fluctuations in the number of active users at the beginning
of the evolution can induce the system to jump from one basin of attraction to another.
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Figure 3.5: The most probable configuration reached from empty initial conditions for two net-
works. The dashed line corresponds to the empirical stability of the two networks.
The insets (x and y axes each denote the activity from 0 to 1) show the basins of
attraction in the meanfield approximation for σ = 0.8 and λ/λ1

c = 4 (left), λ/λ1
c = 6

(center), and λ/λ1
c = 8 (right).

Therefore, to determine the effective coexistence space in the plane (σ, λ), we evaluate
the probability that a state of coexistence of a certain number of networks is reached
when starting from empty networks. In the case of two competing networks, we define
the effective critical line σeffc (λ; 2) as the line below which the probability of the two
networks reaching coexistence is greater than 1/2.

Figure 3.5 shows the results of this program for two competing networks and ν = 4.
The effective critical line follows the critical line in Fig. 3.4 for low values of λ and
saturates at a constant value when λ/λ1

c � 1. This result can be understood in terms of
the shape of the basin of attraction of the coexistence solution near the origin. Indeed,
only in this region are fluctuations important enough to make the system change from
one basin to the other. As an illustration, in the inset of Fig. 3.5 we show such a basin
for nl = 2 and different values of λ in the meanfield approximation. As can be observed,
the shape of the basin in the neighborhood of ρa1,2 ∼ 0 is almost independent of the value
of λ, which explains why the probability of reaching the coexistence state saturates at a
constant value.

This saturation effect is similarly observed for systems of more networks, where the
effective critical lines of higher coexistence states successively saturate at lower values;
that is σeffc (∞; 2) > σeffc (∞; 3) > σeffc (∞; 4) · · · , which narrows the effective coex-
istence region in the plane (λ, σ) for large numbers of networks. This is particularly
relevant because, although our theory allows for the coexistence of an arbitrarily large
number of networks, the stochastic nature of the dynamics, coupled with the narrow
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Figure 3.6: Probability of reaching the coexistence state for two networks for different values
of ν, for λ/λ1

c = 6 and σ = 0.70. The blue area denotes one standard deviation
(from top to bottom).

form of the basin of attraction at low densities of active users, makes such coexistence
highly improbable. Therefore, our model predicts—even without knowledge of the exact
empirical parameters—a moderate number of coexisting networks in a large fraction of
the parameter space.

3.4.4 Influence of mass media

The results shown in Fig. 3.5 are obtained for a fixed value of the parameter ν. While
this parameter has no influence on the stability of the coexistence solution, and thus
no effect on the results shown in Fig. 3.4, it has a strong influence on the probability
of reaching coexistence. Indeed, when ν is finite, the last term in Eq. (3.3) acts, at
the beginning of the evolution, as a temporal boost that increases the fraction of active
users in each network. This mechanism drives the system closer to the coexistence state
where its attractor is broader. Figure 3.6 shows the simulation results of the probability
of reaching coexistence as a function of ν for two competing networks. For small values of
ν, the initial boost is large and the system almost always ends up in the coexistence state.
For larger values of ν, the probability decreases significantly. We conclude that a higher
boost—hence a smaller value of ν—favors the effective reachability of the coexistence
state; whereas a small boost reduces that probability dramatically. Since ν is related to
the influence of mass media, these results show that mass media influence plays a crucial
role in the diversity of the digital ecosystem.
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Figure 3.7: Evolution of the fraction of active users (top) and the fraction of total users (bot-
tom) for two competing networks. The first column corresponds to the parameters
λ/λ1

c = 5, σ = 0.5, and ν = 4 which lies in the coexistence region. The second
column represents the parameters λ/λ1

c = 5, σ = 0.75, and ν = 4, which lies in the
dominance region.

3.4.5 Temporal evolution

The temporal evolution of the process also shows interesting patterns. Figure 3.7 shows
typical realizations of the process below and above the effective critical line in the case
of two competing networks. It should be noted that in both cases, during the first stage
of the evolution, the two networks acquire a very similar number of active users, making
the forecasting of which network will eventually prevail very difficult. In a second stage,
the symmetry is broken and one of the networks starts dominating, while the activity
of the other declines. This pattern of “rise and fall” has been observed in many real
OSNs [87]. In our model, however, such behavior is a consequence of the non-linear
coupling between the networks, without the need to introduce an exogenous mechanism
to explain it [97]. Meanwhile, the effective critical lines shown in Fig. 3.5 separate regions
in a probabilistic way. This implies that in the vicinity of these lines, it is possible to
find realizations that, with the same parameters and initial conditions, have opposite
fates. This is illustrated in Fig. 3.8 where we show two different realizations of three
competing networks. In the first column of Fig. 3.8, we show one such realization where
two out of three networks coexist and, in the second column, a realization where only
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Figure 3.8: Evolution of the fraction of active users (top) and the fraction of total users (bot-
tom) for three competing networks. Both columns correspond to the same param-
eters λ/λ1

c = 7.5, σ = 0.8, ν = 4, but are different realizations.

one of the three networks prevails.

3.5 Summary: Digital ecology

OSNs constantly compete to attract and retain users’ attention. From this point of
view, OSNs and other digital services can be understood as forming a complex digital
ecosystem of interacting species that compete for the same resource: our networking
time. In this chapter, we have introduced a very general and concise theory of such
an ecosystem. Akin to standard ecological theories of competing species, the fitness of
OSNs increases with their performance following a preferential attachment (or rich-get-
richer) mechanism. However, unlike the case of standard ecology, the total fitness of the
system is a conserved quantity, which induces diminishing returns in the fitness of each
network. Over a range of parameters, the combination of these two mechanisms leads
to stable states of coexistence of many networks, in stark contrast to the competitive
exclusion principle [91].

However, stable coexistence is only possible across a range of the parameter space,
which is delimited by a critical line. At that critical line the system undergoes a subcrit-
ical pitchfork bifurcation akin to a first-order phase transition. Our model thus predicts
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that a minimal change or perturbation in the interactions between the different networks
can have a catastrophic effect on the fate of the system. In any case, due to the stochastic
nature of the dynamics and the multitude of fixed points, a stable coexistence solution
is not always reached. The probability of reaching such a solution is an indicator of
the diversity observed in the digital ecosystem. Interestingly, we find that over a large
proportion of the parameter space the most probable outcome is the coexistence of a
moderate number of digital services; in agreement with empirical observations. This
number is, in general, greatly affected by the magnitude of the mass media influence.

The flexibility of our theory allows us to reproduce, with only three parameters, a
large number of possible outcomes that have been observed empirically. In the following
chapter, we will account for a more complex situation in which networks are not a priori
identical but can have different intrinsic fitnesses or are launched at different times.
In particular, we will show how a globally operating network acquires a higher fitness
compared to its local competitors because it provides users with the possibility to connect
to individuals from different countries.
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4 Competition between local and global
networks

“The absence of ’counterfactual’ versions of history
tends to have the effect that we tend to perceive what

actually happened as having been inevitable.”
Duncan Watts [9]

This chapter is – with some small changes – available as a preprint at [102]
and currently under review. Most figures are identical to the preprint.

4.1 Introduction

In the previous chapter we have introduced an ecological description of the digital world
which deals with a priori identical networks. We have demonstrated that a moderate
number of identical networks in competition for users’ attention can coexist in the digital
ecosystem, in contrast to the principle of competitive exclusion [91].

In contrast to the previous chapter, here we address the heterogeneity of networks.
Networks can differ in functionality, features, and –most importantly– they can address
different peer groups. Here, we show how the effect of different overlapping peer groups
can be described in terms of different degrees of network fitness. We find that under
certain conditions, the heterogeneity of degrees of fitness can impede coexistence which
would indeed be possible for identical networks. This effect is particularly important for
the competition between local networks and an international network. Unlike users of
local networks, users of the international network have the possibility to interact with
people in other countries, providing this network an advantage over local ones, similar
to a higher fitness of a certain species. A proper modeling of this effect requires taking
into account the network of interactions among countries in the world, which results in
a highly complex and non-linear dynamical system made of interconnected multilayers
– we are hence dealing with networks of multiplex networks [38, 103–105], in contrast
to the previous chapter. Besides, we will show that inter-country interactions induce a
different type of bifurcation as the symmetry of the system is broken, which constitutes a
fundamentally new behavior not observed in the model presented in the previous chapter.

Empirical observations have shown that Facebook expanded massively in the middle
of the first decade of this century, starting in the US, when local networks were the most
popular services in most countries. Only a few years later, Facebook had become the
most popular network in most countries. So, is the fate of the digital world to become
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dominated by a single “big brother” as it takes over all our digital interactions? Alter-
natively, is digital diversity possible from a system-level perspective? In this chapter,
we show that due to the nonlinear character of the underlying laws at work, the answer
to both questions can be positive or negative depending on a range of parameters and,
quite surprisingly, depending on chance.

4.2 Complex organization of the digital world
The digital world consists of highly connected and strongly coupled interacting sub-
systems. These basic building blocks are single networks, each of which obeys specific
dynamics in the absence of coupling to the whole system. So the complexity of the digital
world is a consequence of both the dynamics of networks in isolated environments, which
we studied in chapter 2, and the interactions between many such networks, as studied
in the previous chapter. Finally, not all of these building blocks are identical. Instead,
different networks address different peer groups or have different functionalities. Hence,
to reveal the fundamental mechanisms that determine the fate of the digital world, it
is necessary to understand the interaction of heterogeneous networks, each driven by
intrinsic dynamics.

4.2.1 Isolated dynamics of online social networks
The key actors in the digital world are OSNs; loosely defined as web-based platforms that
enable digital social interactions over the Internet. However, societies were organized as
networks long before OSNs were even thought of. From this point of view, the growth
of OSNs can be described through the dynamical processes by which people in the
traditional off-line social structure come to engage in OSNs. The topology of the OSN
is now the digital counterpart of the underlying off-line social network [40, 106]. Recall
from chapter 2 that, in isolation, this process of formation can be described by a set of
simple dynamical mechanisms, namely a viral spreading mechanism and the influence
of mass media acting on the pre-existing underlying social network. In chapter 2, we
were able to rigorously validate the dynamics ruling OSNs in isolation; the fundamental
building blocks of the digital world. These findings constitute the foundation for the
development of a more comprehensive theory of interacting heterogeneous networks.

4.2.2 Competitive interaction between multiple networks
The simultaneous existence of multiple digital services in competition for the attention
of users suggests an ecological perspective from which to explain the prevalence of a
given network or the coexistence of multiple networks, as introduced in the previous
chapter. Recall that the key principle that drives the competition between OSNs is the
fact that, due to the physical and cognitive limitations of users, the time they devote
to online activities is limited. As a consequence, the viral parameter, λ, constitutes a
conserved quantity that is nevertheless distributed between the competing networks as
λi = ωi(ρa)λ, where ωi(ρa) represents a normalized set of weights, that is

∑
i ωi(ρa) = 1,
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and ρa ≡ (ρa
1, ρ

a
2, . . . ) is a vector denoting the fraction of active nodes (activities) in the

different networks. In general, users are more likely to subscribe to and engage in
networks that are more active. Therefore, the viral activity of each network must be a
function of the activity of the network itself. In particular, we model this by assuming
that the weights function ωi(ρa) obeys ∂ωi(ρa)/∂ρa

i > 0. From the previous chapter we
recall that

ωi(ρa) = [ρa
i ]
σ∑nl

j=1

[
ρa
j

]σ , (4.1)

were nl denotes the number of networks. This choice allows us to interpolate between
a set of independent networks (σ � 1) and highly coupled ones (σ � 1). The activity
affinity parameter, σ, then quantifies the tendency of users to subscribe to or engage in
more active networks. Recall that, in contrast to the principle of competitive exclusion,
multiple networks can coexist because the rich-get-richer mechanism is damped by the
diminishing returns of the dynamics of network evolution.

4.2.3 Network heterogeneity leads to effective activity

As mentioned above, since its official launch in 2004, Facebook has become the most
popular OSN in most countries; even in countries where there was already a popular OSN
before Facebook was launched. To mimic the real evolution of the digital ecosystem at
the worldwide scale, we assume that one local network exists in each country in addition
to a globally operating, international network (see Fig. 4.1a). In the US, both networks
are launched at the same time; whereas the international network is launched with a
delay ∆t in the remaining countries, to take into account the initial prevalence of local
networks.

Once launched, the international network provides the user with the possibility to
connect to individuals in different countries, in contrast to local networks, making it
more attractive to users. For a given country, the advantage of the international network
is directly related to the abundance of social ties between that country and the rest of
the world. We use passenger air travel data as a proxy for the abundance of such ties.
This choice is justified by the strong correlation between air travel flows and further
measures of inter-country exchange, for instance email communication [107] or Twitter
activity [108].

Users in country i experience the greater attractiveness of the international network
as they perceive its activity with respect to the population of their own country and also
with respect to their contacts in other countries. To account for this on a coarse grained
level, in Eq. (4.1), we replace the activity of the international network by an effective
activity as follows

ρ̃a
i,int = ρa

i,int + α
∑
j

Ωijρ
a
j,int , (4.2)

where
Ωij = Wij/Ni

max[Wij/Ni]
(4.3)
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Figure 4.1: Constituents of our model. a) Design of the international network and local net-
works. b) Sketch of our model using coarse-grained coupling. c) Visualization of
the flight network. The size of the nodes is proportional to the number of users
in the respective countries with Internet access. The transparency and thickness
of the links represents the density of passengers between the countries concerned.
d) Illustration of the competition between the international network and the local
network within one country.
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denotes the fraction of the number of air travel passengers between countries i and j,
Wij ; and Ni, the population of country i. Notice that, in an ecological context, this
corresponds to increased fitness of the international network. In Eq. (4.2), we have
implicitly assumed proportionality between the number of passengers and the number of
contacts in the respective countries, namely Nij ∝Wij . Finally, note that the arbitrary
normalization in Eq. (4.3) serves the sole purpose of ensuring that reasonable values for
the parameter α are of the order of unity.

Hereafter, we decompose the international network into a set of disjunct coupled
subnetworks operating in each country and in competition with the respective local
network (see Fig. 4.1b). These subnetworks are nevertheless not independent, as they
are globally coupled via the effective activity defined in Eq. (4.2) and ultimately by the
network representing the inter-country social ties. Hence, our model forms a network of
networks [38, 103–105], where each node in Fig. 4.1c represents a three-layer multiplex
network [75,109] in which the bottom layer corresponds to the underlying social structure
and the two upper layers denote the local and international networks operating in the
respective country (see Fig. 4.1d).

4.3 Double meanfield approximation reveals complex role of
the activity affinity

To understand the qualitative behavior of the system, in this section we present a double
meanfield approximation of the system. This reduces the system given by a network of
networks to a set of evolution equations of the average activity in the international net-
work and in local networks. As we show in section 4.4, the results of the full model with
heterogeneous topologies exhibits similar behavior to that encountered by the double
meanfield approximation.

The first meanfield approximation consists of assuming a fully mixed homogeneous
population in each country. Let ρa

i,l denote the fraction of active users in network
l ∈ (loc, int) in country i and ρs

i,l the fraction of nodes susceptible to joining this net-
work. Then, the fraction of passive users is given by 1− ρs

i,l − ρa
i,l. As explained above,

in each country the virality is distributed between the local and international network
via the weight functions ωloc(ρa

i,loc, ρ̃
a
i,int) and ωint(ρa

i,loc, ρ̃
a
i,int) = 1− ωloc(ρa

i,loc, ρ̃
a
i,int), as

introduced in Eq. (4.1). Here, ρ̃a
i,int denotes the effective activity of the international net-

work as defined in Eq. (4.2). The evolution equations of the resulting system represent a
generalization of the evolution equations for identical networks which we derived in the
previous chapter, where one replaces the activity of the international network with the
effective activity from Eq. (4.2) in the argument of the weights function from Eq. (4.1).
This procedure yields

ρ̇a
i,l = ρa

i,l

{
λ 〈k〉ωl(ρa

i,loc, ρ̃
a
i,int)

[
1− ρa

i,l

]
− 1

}
+µi,lρs

i,l

ρ̇s
i,l = −µi,lρs

i,l

{
1 + ν 〈k〉 ρa

i,l

}
.

(4.4)
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We further assume the same linear relationship between virality and media influence in
each country as in the previous chapters, that is

µi,loc =
λωloc(ρa

i,loc, ρ̃
a
i,int)

ν

µi,int =
λωint(ρa

i,loc, ρ̃
a
i,int)

ν
.

(4.5)

Analogously to the previous chapter, the value of ν does not affect the stability of the
system. In what follows, we perform the stability analysis in the limit ν → ∞. This
decouples the evolution of ρa

i,l from ρs
i,l, so that we only have to consider ρa

i,l. Plugging
in the weights function defined in Eq. (4.1) and the effective activity from Eq. (4.2)
yields the evolution equations for the activities of the local and international networks
in country i,

ρ̇a
i,loc = ρa

i,loc

[
λ 〈k〉 [ρa

i,loc]σ

[ρa
i,loc]σ + (ρa

i,int + δi)σ
[1− ρa

i,loc]− 1
]

ρ̇a
i,int = ρa

i,int

[
λ 〈k〉 (ρa

i,int + δi)σ

[ρa
i,loc]σ + (ρa

i,int + δi)σ
[1− ρa

i,int]− 1
]
,

(4.6)

where δi = α
∑
j Ωijρ

a
j,int.

The second meanfield approximation consists of applying the hypothesis of a fully
mixed homogeneous network for the inter-country social ties. We use Ω̄ = α 〈Ωij〉 and
define the mean activity of the local networks as x ≡ 〈ρa

i,loc〉 and the mean activity of
the international network as y ≡ 〈ρa

i,int〉. Finally, our double meanfield approximation
leads to the following system of coupled differential equations

ẋ = x

[
λ 〈k〉 xσ

xσ + (y(1 + Ω̄))σ
[1− x]− 1

]

ẏ = y

[
λ 〈k〉 (y(1 + Ω̄))σ

xσ + (y(1 + Ω̄))σ
[1− y]− 1

]
,

(4.7)

which has three relevant parameters: λ 〈k〉, σ, and Ω̄. Note that by setting Ω̄ to zero,
we recover the equations for identical networks presented in the previous chapter.

In what follows, we discuss the dynamical properties of the system given by Eq. (4.7).
For constant σ, the system exhibits a saddle-node bifurcation at a critical value of the
global connectivity Ω̄c(σ) (see Fig. 4.2). Above this point, coexistence is not possible
and the only stable solutions correspond to the domination of either local networks
or the international one. Both above and below the critical value Ω̄c(σ), the basin of
attraction of the solution corresponding to the domination of local networks decreases
with Ω̄, whereas that of the international network increases (see the rows of Fig. 4.2).
Furthermore, at the critical point, the basin of attraction of the international network
is amplified discontinuously as the region of coexistence in the subcritical regime is now
merged with the basin of attraction of the domination of the international network.
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Figure 4.2: Bifurcation diagram and stream plots for the double meanfield approximation (4.7)
for λ 〈k〉 = 3.5 and ν → ∞. The basins of attraction for the domination of the
international network are in blue, the basins of attraction for the domination of
local networks are in red; the white areas correspond to the basins of attraction of
the coexistence solution (if it exists).
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Figure 4.3: Phase diagram of the double meanfield approximation for λ 〈k〉 = 3.5. The white
area denotes the parameters for which coexistence is possible. The blue area de-
notes the parameters for which only domination of either local or the international
network can occur. At the blue line, the system undergoes a saddle-node bifur-
cation in which the stable coexistence solution disappears. The red line denotes
the combination of parameters for which the system switches attractors for the
initial conditions given by Eq. (4.8), where we use β = 0.2 to reflect that the US
contributes about 20% of the population. The red region shows the parameters
for which the solution of domination of local networks is reached for these initial
conditions. Above the red line, the system approaches the domination of the in-
ternational network (solid red line) or the coexistence solution (dashed red line).

For constant Ω̄ > 0, the system also exhibits a saddle-node bifurcation1 at a critical
value of the activity affinity σc(Ω̄). The evolution of the basins of attraction is more
complex compared to the previous case. Below the critical point, both basins of attrac-
tion increase with σ. Above the critical point σc(Ω̄), the basin of attraction of the local
networks increases whereas the basin of attraction of the international network decreases
with σ (see the columns of Fig. 4.2). This is particularly interesting as it implies that an
intermediate value of the activity affinity just slightly above the critical point σ & σc(Ω̄)
represents the worst scenario for the survival of local networks, since at this point the size
of the basin of attraction of the domination of the international network is maximum.

In Fig. 4.3, the blue line indicates the critical line Ω̄c(σ) in the σ-Ω̄ plane, which
separates a phase in the parameter space where coexistence is possible (white region)

1In the previous chapter we showed that the system undergoes a subcritical pitchfork bifurcation with
respect to the control parameter σ, above which no stable coexistence is possible. Ω̄ > 0 breaks the
symmetry of the pitchfork bifurcation and in this case the system undergoes a saddle-node bifurcation
with respect to σ instead (see bottom panel of Fig. 4.2). This behavior is well known in bifurcation
theory and results from adding a small error term to the normal form of the pitchfork bifurcation
(see appendix D.5).
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4.4 Numerical simulations and synthetic networks

and one in which only domination can occur (blue region). However, the increasing size
of the basin of attraction of the domination of local networks above the critical point
with respect to σ > σc(Ω̄) can dramatically alter the fate of the system for a given set
of initial conditions. Assume, for instance, that the international network dominates in
the US and starts with a significant delay in each other country, which causes the local
networks to dominate in those countries. At the time when the international network is
launched globally, the state of the system can be approximated as follows

x0 = (1− β)
[
1− 1

λ 〈k〉

]
y0 = β

[
1− 1

λ 〈k〉

]
,

(4.8)

which we now use as initial conditions to study the further evolution. Notice that if
one network dominates in country i, its activity is given by ρa

i,l = 1 − 1
λ〈k〉 . Hence, the

initial conditions given by Eq. (4.8) reflect the fact that local networks dominate in the
fraction (1 − β) of the system and the international one dominates in the remainder.
The evolution of the basins of attraction makes the system approach different stationary
solutions from these initial conditions for different parameters. Below the red line in
Fig. 4.3, the system approaches the domination of local networks starting from the initial
conditions given in Eq. (4.8). Above this line, the system either approaches coexistence
(white area; crossing dashed red line) or domination of the international network (blue
area; crossing solid red line). This means that in the red region, when the international
network is launched globally, it is not able to overcome the initial advantage of the local
networks due to its earlier launch.

To conclude, the double meanfield approximation predicts that intermediate values
of the activity affinity most favor the international network; whereas the local networks
can dominate for a high activity affinity and low global connectivity. We confirm these
findings by numerical simulations in the following section.

4.4 Numerical simulations and synthetic networks

In this section, we go beyond the meanfield approximation and study, by means of nu-
merical simulations, the effects of the real topology of inter-country social ties and of
underlying social structures. To this end, we use the air travel network (see Fig. 4.1c and
appendix D.2) as a proxy for inter-country social ties and construct 1:1000 scaled syn-
thetic networks to model the structure of the 80 countries with most Internet users (see
Tab. 4.1). To generate these networks, we make use of a model introduced in [110–112],
which produces realistic topologies of the traditional off-line social networks, including
heterogeneous node degrees and a high level of clustering (see appendix D.1).

Fig. 4.4 shows results from our model for the set of parameters that best matches
empirical observations, which we will explain in section 4.5. The international network
starts with a delay in all countries except the US; so that initially in these countries the
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China 253. UnitedStates 231.
Japan 90.9 India 81.
Brazil 64.9 Germany 62.
UnitedKingdom 48.8 Russia 45.2
France 42.9 SouthKorea 37.5
Indonesia 30. Spain 25.2
Canada 25.1 Italy 25.
Turkey 24.5 Mexico 23.3
Iran 23. Vietnam 20.8
Poland 18.7 Pakistan 18.5
Colombia 17.1 Malaysia 16.9
Thailand 16.1 Australia 15.2
Taiwan 15.1 Netherlands 14.3
Egypt 11.4 Argentina 11.2
Nigeria 11. Ukraine 10.4
Morocco 10.3 Sweden 8.1
SaudiArabia 7.7 Belgium 7.3
Venezuela 7.2 Peru 7.1
Romania 6.1 CzechRepublic 6.
Austria 5.9 Hungary 5.9
Switzerland 5.7 Philippines 5.6
Chile 5.5 Denmark 4.6
Portugal 4.5 Finland 4.4
Greece 4.3 Sudan 4.2
SouthAfrica 4.2 HongKong 4.1
Algeria 4.1 Norway 3.9
Slovakia 3.6 Syria 3.6
Singapore 3.4 Kenya 3.4
Belarus 3.1 NewZealand 3.
Serbia 2.9 UnitedArabEmirates 2.9
Ireland 2.8 Tunisia 2.8
Bulgaria 2.6 Uganda 2.5
Uzbekistan 2.5 Kazakhstan 2.3
Lebanon 2.2 DominicanRepublic 2.1
Israel 2.1 Guatemala 2.
Croatia 1.9 Lithuania 1.8
Jamaica 1.5 Jordan 1.5
Azerbaijan 1.5 CostaRica 1.5
Cuba 1.4 Zimbabwe 1.4
Uruguay 1.3 Ecuador 1.3

Table 4.1: List of countries and estimated number of Internet users (×106) according to the
Wolfram Alpha database.
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Figure 4.4: Evolution of our model averaged over several realizations for the parameters
σ = 1.25, ∆t = 3, and α = 2 (here, we excluded realizations in which local networks
dominate, which occurs with approximately 30% probability for these parameters).
The mapping from model time to real time is explained in section 4.5. The relative
importance of the influence of mass media compared to the viral spreading mech-
anism is governed by the parameter ν introduced in Eq. (4.5). In all numerical
simulations, we set ν = 4: the value found empirically in chapter 2; and λ = 0.2
(this corresponds to λ/λ1

c ≈ 4.3 in 3). The relative prevalence of the international
network, given by ρa

i,int/(ρa
i,int + ρa

i,loc), is color coded. We consider the interna-
tional network to be banned in China and Iran. To model this, we set the values of
Ωij = 0 for each entry which involves one of these countries. This is equivalent to
assuming that in these countries two local networks compete without any coupling
to the rest of the world.
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4 Competition between local and global networks

Figure 4.5: Relative prevalence Φ of the international network is plotted on the z axis as a
function of the launch time delay ∆t and the coupling strength σ. Averaged over
30 realizations.

respective local network dominates. After some time, the international network obtains
a significant advantage and quickly takes over in most countries.

To further study the properties of the model presented here, we define the relative
prevalence of the international network compared to local networks as

Φ = 1
nc

nc∑
i=1

ρa
i,int

∣∣∣
st

ρa
i,int

∣∣∣
st

+ ρa
i,loc

∣∣∣
st

, (4.9)

where nc denotes the number of countries, and ρa
i,int

∣∣∣
st

and ρa
i,loc

∣∣∣
st

are the activities of the
international and local networks in country i in the stationary state. With this definition,
a value of Φ ≈ 0 implies that local networks dominate in most countries, whereas Φ ≈ 1
corresponds to the domination of the international network. The relative prevalence
of the international network averaged over many realizations is shown in Fig. 4.5 for
different values of α as a function of the activity affinity, σ, and the launch time delay,
∆t. For small values of ∆t, we observe that when σ is small, the international and local
networks coexist and we observe values around Φ ≈ 0.5 for the relative prevalence; then,
increasing σ favors the international network, which dominates for values of σ & 0.5 (see
Fig. 4.6 top and center). For larger values of ∆t, this behavior smoothly translates into
a more complex case, which we discuss below.

We observe in Fig. 4.5 that for launch time delays ∆t ≥ 2, the actual length of the delay
becomes irrelevant. This behavior corresponds to the limit of saturation of the evolution
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Figure 4.6: The prevalence of the international network for top: ∆t = 0, center: ∆t = 0.1,
and bottom: averaged over time delays ∆t ≥ 2 as a function of the activity affinity
(σ) and the global connectivity (α). Averaged over 30 realizations.
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of local networks before the international network is launched; as discussed in section 4.3.
We consider this limit by averaging over regions with ∆t ≥ 2 in Fig. 4.6 (bottom), which
yields a two dimensional parameter space σ-α. Indeed, numerical simulations of the full
model confirm the results from the meanfield analysis; in particular the complex role of
the activity affinity σ. For small α and σ, local networks and the international network
can coexist. Increasing σ or α favors the domination of the international network, which
gives rise to the blue “V”-shaped region around σ = 0.5. This corroborates the saddle-
node bifurcation predicted by the double meanfield approximation. See supplementary
video [113] for an explicit realization. For high values of σ and small values of α (red
region in the bottom right-hand corner of Fig. 4.6), local networks dominate. Note that
partial states are also possible, in which the international network dominates in some
countries and local networks dominate in the remaining countries. See supplementary
video [114] for an explicit realization of this case.

Between the regions of domination of the international network and of local networks,
there is a region in which the final fate of the system varies significantly between different
realizations of the model (“coinflip region”). In this region, if the international network
wins initially in the US, it will become dominant globally; otherwise, local networks
maintain their initial prevalence. Although in this region the prevalence of the interna-
tional network averaged over many realizations is about 0.5, as in the coexistence region
in the bottom left-hand corner of Fig. 4.6, the behavior of the system differs dramatically
from one to another. In the coexistence region, each realization of the model leads to the
same final state: coexistence of local networks and the international one. In contrast,
in the coinflip region, coexistence is not possible, as this region of the parameter space
corresponds to the supercritical regime (the blue area in Fig. 4.3). In the coinflip re-
gion, about 50% of the realizations end up with domination of the international network,
whereas the remaining 50% lead to the domination of local networks. As a consequence,
even if we know the exact parameters, it is impossible to predict the fate of the system
beforehand.

We can summarize these findings as follows. A higher value of α, which is a measure
of the global connectivity of society, favors the prevalence of the international network
and hinders the survival of the local ones. The role of the tendency of individuals to
participate in more active networks (activity affinity), σ, is particularly interesting. Low
values allow the networks to coexist, whereas intermediate values always lead to the
prevalence of the international network and the extinction of local networks. A high
activity affinity, however, enables the prevalence of local networks and thus can even
lead to the extinction of the international network.

4.5 Comparison with empirical data

In this section, we compare the results of our model with empirical data on the recent
expansion of Facebook at the cost of many local networks. In particular, we consider
the evolution of the number of countries in which local networks (i.e. networks that
are not Facebook) are the most popular ones, as measured in [115] using Alexa traffic
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Figure 4.7: Comparison between model results and empirical data. a) χ2 for different values

of a1 (year) and a2 (time stretch) for σ = 1.25, α = 2, and ∆t = 3. b) Model
results and empirical data. Here, the parameters are σ = 1.25, α = 2, and ∆t = 3
and the optimal mapping is given by a1 = 2006 and a2 = 0.6 (see a). c) χ2 for the
respective best time mapping as a function of σ and ∆t for different values of α.
In each plot, the minimal value of χ2 and the respective time mapping are shown
in the boxes. The color coding in all plots represents the logarithm of χ2.

data (see Fig. 4.7b). We observe a significant decline of this number, which rules out
the possibility that the empiric case corresponds to the domination of local networks.
Because the past can be considered a single realization of a stochastic process [9], the
empiric case can still be within the coinflip region of our model where –by chance–
the international network was more successful. Hence, we will perform the following
comparison only for realizations of our model in which local networks do not dominate.

The intrinsic timescale of the model is arbitrary and hence has to be mapped to real
time. The optimal mapping is given such that it produces the best agreement with the
empirical data. We quantify the agreement between model results and empirical data
using the sum of the squared distances between the data points and model results. In
particular, we use the χ2 statistic defined as

χ2 = 1
σ2
N

∑
i

[
Ni −Nmodel

i

]2
, (4.10)

where Ni denotes the number of countries where the local network is more popular and
Nmodel
i is the corresponding result from the model. The index i denotes the individual

datapoints and σ2
N = 1.5 is the estimated variance of the data (see appendix D.3). The
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real time, tR, is a linear function of the model time tM given by tR = a1 + a2tM , where
a1 is the starting year and a2 represents the time stretch: how many years of real time
correspond one model time step. For a given set of parameters, σ, α, and ∆t, the optimal
values for a1 and a2 are those that minimize χ2, as shown in Fig. 4.7a.

We can also use the χ2 statistic to estimate the parameters α, σ, and ∆t which best
reproduce the empirical observations. In Fig. 4.7c, we plot the values of χ2 as a function
of α, σ, and ∆t, where –at each point– we applied the respective best time mapping,
as described above. These results are averaged over several realizations of the model;
however, in the coinflip region we exclude realizations where the local networks dominate,
to mimic the empirical case. Interestingly, the overall best fit is achieved for α = 2 at
σ = 1.25 and ∆t = 3, which lies in the coinflip region2 with a probability for domination
of the international network of 70%. This scenario corresponds to the time mapping
a1 = 2006 and a2 = 0.6, meaning the system started at the beginning of 2006; while
the launch time delay of ∆t = 3 in the model translates to 1.8 years in real time. In
Fig. 4.7b, we show the evolution of the number of countries where local networks are
more popular for the optimal fit from the model.

4.6 Summary: Competition between local and global networks
Understanding the complex dynamics of the digital world constitutes an important chal-
lenge for interdisciplinary science. To meet this challenge, here we describe the worldwide
web as a complex, digital ecosystem in which interacting networks play the role of species
in competition for survival. In this chapter, we studied the competition between local
networks operating in single countries and an international network that operates in all
countries. Therefore, a proper description of this system must necessarily involve the
network of worldwide social interactions between different countries.

We showed that the effect of inter-country social ties can be mapped to the increased
fitness of the international network by means of an effective activity. Interestingly, there
is a critical global coupling strength below which networks can coexist. However, above
that threshold, only domination is possible: in general, local networks become extinct
with a high probability. Yet, we find that if local networks are launched earlier they can
persist and dominate the international network, which happens only if local networks
have accumulated a sufficiently large active userbase when the global launch of the
international network takes place. The accumulation of a sufficient base depends on the
parameters; and for certain parameters on chance. For these parameters the final state
of the system –whether local networks dominate or become extinct– can be completely
unpredictable, as it varies randomly between different realizations of the model.

Quite remarkably, a thorough comparison of our model with empirical data from the
recent takeover of Facebook indicates that the most probable launch date of Facebook
was at the beginning of 2006 and its global launch was in late 2007. Facebook was in fact
started in 2004, but opened to the public in 2006; in good agreement with the estimate

2The optimal value of χ2 is statistically consistent with the model, given the number of degrees of
freedom in the data.
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from our model. Moreover, according to Google trend data (see appendix D.4), 2007 was
the year when the global search volume for Facebook started to increase rapidly. Last
but not least, our best estimation of the model parameters corresponds to the “coinflip”
region, which means that the observed takeover of Facebook only had a probability of
around 70%. With a 30% probability, we would have been living in a world where each
country had its own successful local network and a network like Facebook would not
exist [9].

Our findings suggest interesting future lines of research. On the one hand, even
without adjusting the parameters on a country-by-country level, our model reproduces
the main features empirically observed in the takeover of Facebook and the extinction of
local networks in most countries for a certain parameter region. It remains an interesting
task for future research to further increase the precision of the model. This could be done
by improving the proxy for the similarity between countries or by adjusting parameters
on a country-by-country basis. On the other hand, the model could be extended to
account for several international networks and to study their global competition. For a
second international network to overcome the first, a certain minimal difference of fitness
is needed; which could be the result of different properties of the networks, such as
features or functionalities. Finally, random fluctuations of fitness could be incorporated
to describe Darwinian selection in the digital ecosystem.
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5 Hidden geometric correlations:
community detection and link prediction

“Birds of a feather flock together.”
Unknown

This chapter is – with some small changes – available as a preprint at [116]
and currently under review. Most figures are identical to the preprint.

5.1 Introduction

Real networks are often not isolated entities but instead can be considered constituents
of larger systems, called multiplexes or multilayer networks [62, 75, 109, 117–121]. Ex-
amples can be found everywhere. The most classical one is the multiplex consisting of
the different social networks that a person may belong to, similar to the systems we
studied in the previous chapters. Other examples include the Internet’s IPv4 and IPv6
topologies, or the structural and functional networks in the brain. Understanding the
relations among the networks comprising a larger multiplex is crucial for understand-
ing the behavior of a wide range of real world systems [40, 89, 102, 122, 123]. However,
despite the burst of recent research in studying the properties of multiplex networks,
e.g., [75, 109, 124], a universal framework describing the relations among the single net-
works comprising a multiplex, and what implications these relations may have when it
comes to applications, remains elusive.

In this chapter, we show that real multiplexes are not random combinations of single
network layers. Instead, we find that their constituent networks exhibit strong hidden
geometric correlations. These correlations are called “hidden” as they are not directly
observable by looking at each individual network’s topology. Specifically, each single
network can be mapped (embedded) into a separate hyperbolic space [125–128], where
node coordinates abstract the popularity and similarity of nodes [84,110]. We find that
node coordinates are strongly correlated across layers of real multiplexes, meaning that
distances between nodes in the underlying hyperbolic spaces of the constituent networks
are also strongly correlated.

The discovered geometric correlations yield a very powerful framework for answering
important questions related to real multiplexes. Specifically, we first show that these cor-
relations imply the existence of multidimensional communities, which are sets of nodes
that are similar (close in the underlying space) in multiple layers, and which we can
detect. Further, we show that strong geometric correlations imply accurate trans-layer
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5 Hidden geometric correlations: community detection and link prediction

link prediction, where connections in one layer can be predicted by knowing the hyper-
bolic distances among nodes in another layer. This is important for applications where
we only know the connections among nodes in one context, e.g., structural connections
between brain regions, and we want to predict connections between the same nodes in
some other context, e.g., likelihood of functional connections between the same brain
regions.

It has been shown that many real (single layer) complex networks have an effective or
hidden geometry underneath their observed topologies, which is hyperbolic rather than
Euclidean [84, 125, 126, 129]. In this chapter, we extend the hidden geometry paradigm
to real multiplexes and show that the coordinates of nodes in the different underlying
spaces of layers are correlated. In the following chapter, we discuss how these correlations
affect the navigability of multiplex networks, in particular the IPv4 and IPv6 topologies
of the Internet.

5.2 Hyperbolic geometry: from single networks to multiplexes

5.2.1 Geometry of single layer networks

Nodes of real single-layered networks can be mapped to points in the hyperbolic plane,
such that each node i has the polar coordinates, or hidden variables, ri, θi. The radial
coordinate ri abstracts the node popularity. The smaller the radial coordinate of a
node, the more popular the node is, and the more likely it attracts connections. The
angular distance between two nodes, ∆θij = π−|π−|θi− θj ||, abstracts their similarity.
The smaller this distance, the more similar two nodes are, and the more likely they
are connected. The hyperbolic distance between two nodes, very well approximated
by xij ≈ ri + rj + 2 ln sin (∆θij/2) [125], is then a single-metric representation of a
combination of the two attractiveness attributes, radial popularity and angular similarity.
The smaller the hyperbolic distance between two nodes, the higher is the probability that
the nodes are connected, meaning that connections take place by optimizing trade-offs
between popularity and similarity [84].

Techniques based on Maximum Likelihood Estimation1 for inferring the popularity
and similarity node coordinates in a real network have been derived in [126] and recently
optimized in [127,128]. It has been shown that through the constructed hyperbolic maps
one can identify soft communities of nodes, which are groups of nodes located close to
each other in the angular similarity space [84, 126, 130]; predict missing links with high
precision [127,128,130]; and facilitate efficient greedy routing in the Internet, which can
reach destinations with more than 90% success rate, following almost shortest network
paths [126–128]. Here, we extend this approach to multiplex networks.
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Name Type Nodes Layer 1/Layer 2 Source
Internet Technological Autonomous

Systems
IPv4 AS topology/IPv6 AS
topology

[131]

Air/Train Technological Airports,
Train stations

Indian airport network/Indian
train network

[121]

Drosophila Biological Proteins Suppressive genetic interac-
tion/Additive genetic interac-
tion

[132,133]

C. Elegans Biological Synapses Electric synaptic junc-
tions/Chemical monadic
synaptic junctions

[134,135]

Brain Biological Brain regions Structural network/Functional
network

[123]

arXiv Collaboration Authors physics.bio-ph category/cond-
mat.dis-nn category

[136]

Table 5.1: Overview of the considered real-world multiplex network data.

5.2.2 Datasets of real multiplex networks

Within this chapter, we consider different real-world multiplex networks from diverse
domains. Specifically, we consider the IPv4 and IPv6 topologies of the Internet’s Au-
tonomous Systems [131], the Indian airport and train networks [121], genetic interaction
networks from the Drosophila Melanogaster (common fruit fly) [132,133], synaptic junc-
tion networks from the C. Elegans Connectomme [134, 135], structural and functional
networks from the human brain [123], and collaboration networks from two different
categories of arXiv papers that have the word “networks” in the title or abstract [136].
An overview of the considered datasets is given in Tab. 5.1. In appendix E.1 we provide
a detailed description of these datasets.

5.2.3 Hyperbolic mapping of multiplex networks

To map each layer of each real multiplex from Tab. 5.1 to its hyperbolic space we use
the HyperMap method [127, 128], whose implementation is available at [137]. On its
input the method takes the network adjacency matrix αij (αij = αji = 1 if there is a
link between nodes i and j, and αij = αji = 0 otherwise), and the network parameters
m, γ, T . It then computes radial and angular coordinates ri, θi, for all nodes i ≤ N in
the network. Parameter m is the expected minimum node degree, γ is the power law
degree distribution exponent, and T is the temperature. The values of m, γ, T used to
embed each layer are shown in Table 5.2.

To estimate the values ofm, γ, T for each layer, we use the Extended Popularity×Similarity
Optimization (E-PSO) model described in [127]. The E-PSO model grows synthetic com-

1We will explain this process in the following.
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Layer N k̄ c̄ γ m T

Internet Layer 1 37563 5.06 0.63 2.1 1.0 0.5
Internet Layer 2 5163 5.21 0.55 2.1 1.0 0.5
Air/Train Layer 1 69 5.22 0.79 2.6 1.0 0.005
Air/Train Layer 2 69 9.33 0.48 2.9 1.0 0.4
Drosophila Layer 1 838 4.43 0.28 2.6 0.5 0.68
Drosophila Layer 2 755 3.77 0.29 2.8 0.5 0.65
C. Elegans Layer 1 253 4.06 0.24 2.9 2.0 0.65
C. Elegans Layer 2 260 6.83 0.21 2.9 3.4 0.7
Brain Layer 1 85 5.41 0.49 6.0 2.7 0.4
Brain Layer 2 78 5.48 0.40 6.0 1.0 0.5
arXiv Layer 1 2956 4.13 0.83 2.6 2.0 0.05
arXiv Layer 2 3506 4.19 0.81 2.6 2.0 0.05

Table 5.2: Topological properties and HyperMap parameter values for the considered empirical
multiplex networks.

plex networks and is equivalent to the hyperbolic H2 model [125]. It takes as input the
final network size N , the average node degree k̄, and the network parameters m, γ, T .
We use the E-PSO model to construct synthetic networks with the same size N and
average degree k̄ as in each real layer, using different parameter values for m, γ, T . The
estimated m, γ, T values for each layer are then the values that best match the degree
distribution and average clustering between the layer and the corresponding synthetic
network. We observe from Tab. 5.2 that in several cases the layers of the same multiplex
have the same or similar estimated parameter values.

HyperMap is based on Maximum Likelihood Estimation. It finds the radial and an-
gular coordinates ri, θi for all nodes i ≤ N , which maximize the likelihood

L =
∏

1≤j<i≤N
p(xij)αij [1− p(xij)]1−αij , (5.1)

where the product goes over all node pairs i, j in the network, xij is the hyperbolic
distance between pair i, j,

xij = arccosh (cosh ri cosh rj − sinh ri sinh rj cos ∆θij)
≈ ri + rj + 2 ln sin (∆θij/2),
≈ ri + rj + 2 ln (∆θij/2),

where ∆θij = π − |π − |θi − θj ||, (5.2)

and p(xij) is the Fermi-Dirac connection probability,

p(xij) = 1
1 + e

1
2T (xij−R)

, (5.3)
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5.3 Geometric correlations in real multiplex networks

A B

Figure 5.1: Hyperbolic mapping of the IPv4/IPv6 Internet. A: IPv4 topology—for clarity only
nodes with degrees greater than 3 are shown. B: IPv6 topology.

where R ∼ lnN . To efficiently and accurately maximize the likelihood in Eq. (5.1) the
method follows the techniques described in [127, 128]. Here, we have used the most
recent version of the method described in [128].

5.3 Geometric correlations in real multiplex networks
For each real multiplex we consider, we map each network layer independently to an un-
derlying hyperbolic space using the HyperMap method described in the previous section,
thus inferring the popularity and similarity coordinates r, θ of all of its nodes. A visual-
ization of the mapped IPv4 and IPv6 Internet layers is shown in Fig. 5.1. In all systems
considered we find that node coordinates across layers are not independent. Specifically,
we find that both the radial and the angular coordinates of nodes that exist in different
layers are correlated, which we discuss in detail in the following.

5.3.1 Radial correlations

The radial popularity coordinate of a node i depends on its observed degree in the net-
work ki via ri ∼ lnN− ln ki, where N is the total number of nodes [126–128]. Therefore,
radial correlations are equivalent to correlations between node degrees, which have been
recently found and studied [138–142]. Consistent with these findings, radial correla-
tions are present in our real multiplexes and are encoded in the conditional probability
P (r2|r1), which is the probability that a node has radial coordinate r2 in layer 2 given
its radial coordinate r1 in layer 1. P (r2|r1) for the Internet is shown in Fig. 5.2, where
we observe strong correlations between the radial coordinates of nodes in the IPv4 and
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5 Hidden geometric correlations: community detection and link prediction

Figure 5.2: Conditional probability P (r2|r1) that an AS has radial coordinate r2 in the IPv6
topology given its radial coordinate r1 in the IPv4 topology.

IPv6 topologies.

5.3.2 Angular correlations and multidimensional communities

We find that in addition to the radial correlations the angular coordinates of nodes
in different layers are also correlated. This is a fundamentally new result that has
important practical implications. Fig. 5.3 shows the distribution of nodes that have
angular coordinates θ1, θ2 in layers 1, 2 of the real multiplexes. The figure also shows the
corresponding distributions in the reshuffled counterparts of the real systems, where we
have destroyed the trans-layer coordinate correlations by randomly reshuffling node ids.
Specifically, to destroy the geometric correlations in our real multiplexes, we randomly
reshuffle the trans-layer node-to-node mappings. For each real multiplex we select one of
its layers and we interchange the id of each node of the layer with the id of a randomly
selected node from the same layer. The idea behind this process is that if a node with
id i is node n1 in layer 1 and node n2 in layer 2 with correlated coordinates (rn1 , θn1),
(rn2 , θn2), then, after reshuffling layer 2, the node will become some other node n′2 in
this layer, with coordinates (rn′2 , θn′2) that will not be correlated with (rn1 , θn1). We note
that this reshuffling process is just a random id interchange among the nodes of a layer
and does not alter the layer’s topology. We used this process to create the reshuffled
counterparts of the real multiplexes considered here. The reshuffled counterparts serve
as a null model for what one would expect if there were no geometric correlations among
the layers. From Fig. 5.3, we observe an overabundance of two-dimensional similarity
clusters in the real multiplexes. These clusters consist of nodes that are similar, i.e.,
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5.3 Geometric correlations in real multiplex networks

Figure 5.3: Distribution of nodes in the two-dimensional similarity space of the Internet,
Drosophila, and arXiv multiplexes (top row) and C. Elegans, Air/Train, and
human brain multiplexes (third row). The plots correspond to nodes that exist in
both layers of each system. The angular similarity coordinate of a node in layer 1 is
denoted by θ1 and in layer 2 by θ2. The histogram heights are equal to the number
of nodes falling within each two-dimensional similarity bin, and the colors in each
case denote the relative magnitude of the heights. Second and fourth row: The
same distributions as above but for the reshuffled counterparts of the real systems.
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5 Hidden geometric correlations: community detection and link prediction

are located at small angular distances, in both layers of the multiplex. These similarity
clusters do not exist in the reshuffled counterparts of the real systems, and are evidence
of angular correlations.

The generalization of community definition and detection techniques from single layer
networks to multiplex systems has recently gained attention [136,143,144]. Our approach
here allows one to naturally define and detect multidimensional communities of nodes,
which are sets of nodes that are similar, that is, close in the angular similarity space,
in multiple layers simultaneously. Furthermore, it also provides a measure of distance
between different communities, cf. Fig. 5.3.

In [126–128], the authors have considered the IPv4 Internet topology. They have
shown that the mapping of the topology to its underlying hyperbolic space yields mean-
ingful results, since ASs belonging to the same country are mapped close to each other.
Specifically, for the majority of the countries, they have shown that their ASs are lo-
calized in narrow angular (similarity) regions. The reason for this effect is that ASs
belonging to the same country are usually connected more densely to each other than
to the rest of the world, and the mapping method (HyperMap) correctly places all such
ASs in narrow regions close to each other. We note that other reasons besides geographic
proximity may affect the connectivity between ASs, such as economical, political, and
performance-related ones. The mapping method does not favor any specific reason, but
relies only on the connectivity between nodes (ASs in this case) in order to place the
nodes at the right angular (and hyperbolic) distances.

In Fig. 5.4, we observe a similar effect in the two-dimensional similarity space of the
IPv4/IPv6 Internet. The figure shows the distribution of ASs belonging to different
regions and countries. The AS-to-country mapping is taken from the CAIDA AS Or-
ganizations Dataset [145]. In Fig. 5.4, we can see ASs from regions/countries that are
narrowly distributed in the two-dimensional similarity space, as well as ASs from re-
gions/countries that are more widely spread. The former group of ASs are the ASs
that form strong communities, i.e., that are densely connected to each other, in both
the IPv4 and IPv6 topologies. In the figure, these are the ASs belonging to the Post-
Soviet and South America regions (Fig. 5.4A), as well as the ASs belonging to some
distinct counties such as Austria, Japan, China, Taiwan (Figs. 5.4B,C). By contrast,
ASs belonging to the US and Europe are more widely spread in both the IPv4 and IPv6
similarity spaces (Figs. 5.4A,C). We note that Europe in Fig. 5.4A represents not one
country but a collection of 9 different countries. Finally, we also observe that there can
be ASs from countries that are narrowly distributed in the one similarity space, but not
in the other. This is the case for example with the ASs belonging to Poland, which are
narrowly distributed in the IPv4 space but not in the IPv6 (Fig. 5.4D). This suggests
that these ASs do not form a strong community in IPv6, while they do in IPv4.

5.4 Trans-layer link prediction

The radial and angular correlations across different layers suggest that the hyperbolic
distances among nodes are also correlated. Since nodes that are closer hyperbolically
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5.4 Trans-layer link prediction

Figure 5.4: Distribution of ASs of the same region/country in the two-dimensional similarity
space of the IPv4/IPv6 Internet. The plots correspond to ASs belonging to differ-
ent regions/countries, which exist both in IPv4 and IPv6. The angular similarity
coordinate of an AS in IPv4 is denoted by θ1 and in IPv6 by θ2. For each re-
gion/country, the histogram heights are normalized by the total number of ASs
that belong to the region/country. In A, “Post Soviet” corresponds to the ASs
belonging to Russia, Ukraine, Estonia, and Latvia; “Europe” corresponds to the
ASs belonging to Germany, France, Spain, Finland, Austria, Netherlands, Sweden,
Italy, and Greece; “North America” corresponds to the ASs belonging to the USA
and Canada; and “South America” corresponds to the ASs belonging to Brazil,
Uruguay, Argentina, and Colombia. The histograms in B-D correspond to the ASs
belonging to 10 distinct countries. In B, the countries are Germany (DE), Aus-
tria (AT), and Switzerland (CH); in C, the countries are Japan (JP), China (CN),
Taiwan (TW), and USA (US); and in D, the countries are Ukraine (UA), Russia
(RU), and Poland (PL).
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have higher chances of being connected, we expect that by knowing the hyperbolic
distances between nodes in one layer we can predict the likelihood that the nodes are
connected in the other layer. Fig. 5.5 validates that this is indeed the case. The figure
shows the empirical trans-layer connection probability, P (1|2) (P (2|1)), that two nodes
are connected in one of the layers of the multiplex, given their hyperbolic distance in
the other layer.

To compute the trans-layer connection probability, we consider all nodes that exist in
both layers. In each of the layers, we bin the range of hyperbolic distances between these
nodes from zero to the maximum distance into small bins. For each bin we then find all
the node pairs located at the hyperbolic distances falling within the bin. The percentage
of pairs in this set of pairs that are connected by a link in the other layer is the value
of the empirical trans-layer connection probability at the bin. We observe (Fig. 5.5)
that this probability decreases with the hyperbolic distance between nodes in all the
real multiplexes. By contrast, in their reshuffled counterparts, which do not exhibit
geometric correlations, this probability is almost a straight line. Fig. 5.5 shows that the
trans-layer connection probability decreases with the angular distance between nodes,
which provides an alternative empirical validation of the existence of strong similarity
correlations across the layers.

The problem of link prediction has been studied extensively in the context of pre-
dicting missing and future links in single layer networks [146,147]. Its generalization to
real-world multilayer systems is recently gaining attention [148]. The trans-layer link
prediction approach we described here is quite general, i.e., applicable to any real multi-
plex with geometric structure, and allows one to estimate the most probable connections
among nodes in one layer of the multiplex, by knowing the hyperbolic distances among
the same nodes in another layer.

5.5 Summary: Hidden geometric correlations, community
detection, and link prediction

Numerous real-world systems are multiplex networks where nodes in one network layer
can simultaneously exist in other network layers. Each single network layer can be
mapped into its own hyperbolic space, where node coordinates abstract the popularity
and similarity of nodes. We have found that in different real multiplexes the coordi-
nates of nodes in different layers are correlated, meaning that the underlying hyperbolic
distances of the single layers are also correlated.

Our findings yield a very powerful and general framework for understanding and an-
alyzing real multiplexes. Specifically, we have shown that one can define and detect
multidimensional communities, which are sets of nodes that are simultaneously similar
in multiple layers. We have found that such communities are overabundant in different
real multiplexes compared to their reshuffled counterparts that do not exhibit geomet-
ric correlations. Furthermore, we have also shown that one can facilitate trans-layer
link prediction, where the most probable connections in one layer can be predicted by
knowing the hyperbolic distances among the nodes in some other layer.
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Figure 5.5: Trans-layer connection probability in the considered multiplexes. Top row: Trans-
layer connection probability as a function of hyperbolic distance for the Internet,
Drosophila, and arXiv multiplexes. P (j|i) denotes the probability that a pair of
nodes is connected in layer j given its hyperbolic distance x in layer i. Pran(j|i)
denotes the same probability for the reshuffled counterpart of each real system.
Second row: Corresponding trans-layer connection probabilities when considering
only the angular (similarity) distance between nodes, ∆θ. Third row: Trans-layer
connection probability as a function of hyperbolic distance for the C. Elegans,
Air/Train, and human brain multiplexes. Fourth row: Corresponding trans-layer
connection probabilities when considering only the angular (similarity) distance
between nodes, ∆θ.
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5 Hidden geometric correlations: community detection and link prediction

Our findings can have important applications ranging from understanding functional
and structural brain networks and deciphering their precise relationship(s) [123] to pre-
dicting links among nodes (e.g., terrorists) in a specific network by knowing their con-
nectivity in some other network. Finally, the discovered correlations are crucial for
improving navigation using multiple layers simultaneously, as we show in the following
chapter.
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6 Hidden geometric correlations facilitate
navigation

“My – it’s a small world”
Unknown

This chapter is – with some small changes – available as a preprint at [116]
and currently under review. Most figures are identical to the preprint.

6.1 Introduction
In this chapter, we consider targeted navigation that uses only local knowledge. Tar-
geted navigation is a key function of many real networks, where either goods, people,
or information is transferred from a source to a destination using the connections of
the network. It has been shown that single complex networks, like the IPv4 Internet
or the network of airport connections, can be navigated efficiently by performing greedy
routing in their underlying geometric spaces [111,125,126,149]. In greedy routing, nodes
forward a message to their neighbor that is closest to the destination in the geometric
space. The message either reaches its target, or it enters a loop, i.e. the message is given
back to a node it already visited, and the delivery fails. To study navigation in multiplex
systems, we extend the notion of greedy routing so that a node forwards a message to
its neighbor that is closest to the destination in any of the layers comprising the system.
We call this process mutual greedy routing.

Mutual greedy routing follows the same line of reasoning as greedy routing in Mil-
gram’s experiment [150], explained in detail in the introduction in section 1.2.1. For
example, in the case of a single network, to reach a lawyer in Boston one might want
to forward a message to a judge in Los Angeles (greedy routing). However, in the case
of two network layers, it might be known that the lawyer in Boston is also a passionate
vintage model train collector. An individual who knows a judge in Los Angeles and
the owner of a vintage model train shop in New York, who might be attending all the
vintage train meetings, would probably choose to forward the message to the latter (mu-
tual greedy routing). Similarly, air travel networks can be supported by train networks
to enhance the possibilities to navigate the physical world, individuals can use different
online social networks to increase their outreach, and so on. In this chapter, we consider
the real Internet, which is used to navigate the digital world, and show that mutual
greedy routing in the multiplex consisting of the IPv4 and IPv6 Internet topologies [131]
outperforms greedy routing in the single IPv4 and IPv6 networks. We also use synthetic
model networks to show that geometric correlations improve the navigation of multiplex
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systems, which outperforms navigation in the single layers if these correlations are suffi-
ciently strong. In this context, we also investigate under which conditions adding more
layers improves the navigability of a multiplex system.

6.2 Modeling geometric correlations and implications to
mutual greedy routing

6.2.1 Mutual greedy routing in the Internet multiplex

The IPv4 Internet has been found to be navigable [126–128]. Specifically, it has been
shown that greedy routing (GR) could reach destinations with more than 90% success
rate in the constructed hyperbolic maps of the IPv4 topology in 2009. We find a similar
efficiency of GR in both the IPv4 and IPv6 topologies considered here, which correspond
to January 2015. Specifically, we perform GR in the hyperbolic map of each topology
among 105 randomly selected source-destination pairs that exist in both topologies. We
find that GR reaches destinations with 90% success rate in IPv4, and with 92% success
rate in IPv6. Furthermore, we also perform angular GR, which is the same as GR but
uses only the angular distances. We find that the success rate in this case is almost 60%
in both the IPv4 and IPv6 topologies. We now consider mutual greedy routing. For any
number of layers, (layer 1, . . . , layer n), a node with a message first computes the distance
between its neighbors and the destination of the message in layer 1, then it does the
same for its neighbors and the destination in layer 2, and so on. The node then forwards
the message to the neighbor that has the smallest distance to the destination across all
computed distances. If a message is given back to a node it already visited, the delivery
fails. The success rate is the percentage of messages that reach their destinations. We
distinguish between hyperbolic mutual greedy routing (that hereafter we refer to as
mutual GR) and angular mutual greedy routing, which uses only the angular distances.
Hyperbolic mutual greedy routing between the same source-destination pairs as in the
single layer case increases the success rate to 95%, while angular mutual GR increases
the success rate along the angular direction to 66%. We are interested in angular mutual
GR because its performance depends only on the angular similarity coordinates of nodes
in the different layers1.

The observations above raise the following fundamental questions. (i) How do the
radial and angular correlations affect the performance of mutual GR? (ii) Under which
conditions does mutual GR perform better than single-layer GR? (iii) How does the
performance of mutual GR depend on the number of layers in a multiplex system? And
(iv), how close to the optimal—in terms of mutual GR’s performance—are the geometric
correlations in the IPv4/IPv6 Internet? Answering these questions requires a framework
to construct realistic synthetic topologies (layers) where correlations—both radial and
angular—can be tuned without altering the topological characteristics of each individual
layer. We develop such a framework in the following.

1In some situations nodes may not have knowledge of the popularity of their neighbors and hence can
only rely on the angular component.
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6.2.2 Modeling multiplex networks with geometric correlations
Our framework builds on the (single-layer) network construction procedure prescribed
by the Newtonian S1 [110] and hyperbolic H2 models [125]. The two models are iso-
morphic and here we present the results for the H2 version even if for calculations it
is more convenient to make use of the S1. We recall that to construct a network of
size N , the H2 model first assigns to each node i = 1, . . . , N its popularity and similar-
ity coordinates ri, θi. Subsequently, it connects each pair of nodes i, j with probability
p(xij) = 1/(1 + e

1
2T (xij−R)), where xij is the hyperbolic distance between the nodes and

R ∼ lnN . The connection probability p(xij) is nothing but the Fermi-Dirac distribution.
Parameter T is the temperature and controls clustering in the network [151], which is
the probability that two neighbors of a node are connected. The average clustering c̄ is
maximized at T = 0, nearly linearly decreases to zero with T ∈ [0, 1), and is asymptoti-
cally zero if T > 1. It has been shown that the S1 and H2 models can construct synthetic
networks that resemble real networks across a wide range of structural characteristics,
including power law degree distributions and strong clustering [110,125]. Our framework
constructs single-layer topologies using these models, and allows for radial and angular
coordinate correlations across the different layers. The strength of these correlations can
be tuned via model parameters ν ∈ [0, 1] and g ∈ [0, 1], without affecting the topological
characteristics of the individual layers, which can have different properties and different
sizes. The radial correlations increase with parameter ν—at ν = 0 there are no radial
correlations, while at ν = 1 radial correlations are maximized. Similarly, the angular
correlations increase with parameter g—at g = 0 there are no angular correlations, while
at g = 1 angular correlations are maximized. In the following we present the details of
our modeling framework.

6.2.3 S1/H2 model of single-layer networks
Instead of working directly with the H2 model, we make use of the S1 model [110] that
is more convenient to work with, and which is isomorphic to the H2 model through a
simple change of variables [125]. We first review the S1 model and its relation to the
H2 model. Instead of radial and angular coordinates ri, θi, each node i in the S1 model
has hidden variables κi, θi. The hidden variable κi is the node’s expected degree in the
resulting network, while θi is the angular (similarity) coordinate of the node on a circle
of radius N/2π, where N is the total number of nodes. To construct a network with the
S1 model that has size N , average node degree k̄, power law degree distribution with
exponent γ > 2, and temperature T ∈ [0, 1), we perform the following steps:

i. Sample the angular coordinates of nodes θi, i = 1, 2, . . . , N , uniformly at random
from [0, 2π], and their hidden variables κi, i = 1, 2, . . . , N , from the probability
density function (PDF)

ρ(κ) = (γ − 1)κminγ−1
κ−γ , (6.1)

κmin = k̄
γ − 2
γ − 1 ,
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where κmin is the expected minimum node degree, which is a function of the average
degree k̄; 2

ii. Connect every pair of nodes i, j with probability

r(κi, θi;κj , θj) = 1

1 +
[
d(θi,θj)
µκiκj

] 1
T

, (6.2)

d(θi, θj) = N

2π∆θij , ∆θij = |π − |π − |θi − θj |||,

µ = sinTπ
2k̄Tπ

,

where d(θi, θj) is the angular distance between nodes i, j on the circle.

The S1 model is equivalent to the H2 model after transforming the expected node
degrees κi to radial coordinates ri via

ri = R− 2 ln κi
κmin , (6.3)

where R is the radius of the hyperbolic disc in the H2 model within which all nodes
reside,

R = 2 ln N
c
, (6.4)

c = k̄
sinTπ

2T

(
γ − 2
γ − 1

)2
.

It is easy to see that after the above change of variables the connection probability in
Eq. (6.2) becomes the Fermi-Dirac connection probability in the H2 model,

p(xij) = 1
1 + e

1
2T (xij−R)

, (6.5)

where xij ≈ ri + rj + 2 ln ∆θij
2 is the hyperbolic distance between nodes i, j [125]. We

note that without loss of generality, we use here a hyperbolic plane of curvature K = −1.
See [125] for further details.

6.2.4 Two-layer multiplex model
We now describe our framework for constructing a two-layer multiplex system with
geometric correlations. Each single-layer (layer 1, layer 2) is constructed according to
the S1 model, and we account for correlations among the hidden variables of nodes in

2By sampling from a PDF f(x) we mean that we first compute the CDF F (x) =
∫ x
xmin

dx′ρ(x′), where
xmin is the minimum value of x, then generate a random number ui uniformly at random from [0, 1],
and finally compute the value xi such that F (xi) = ui. The value xi is a sample from the PDF ρ(x)
(or the CDF F (x)).
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the two layers, whose strength can be tuned. The extension of the framework to more
than two layers is straightforward and described in 6.2.5. In a nutshell, our framework
consists of the following steps:

i. Assignment of hidden variables κ1,i, θ1,i to each node i in layer 1 like in the S1

model (Eqs. (6.6), (6.8));

ii. Assignment of hidden variables κ2,i, θ2,i to each node i in layer 2, depending on
the node’s hidden variables in layer 1 (Eqs. (6.11), (6.22))—the assignment here
is done such that the marginal (unconditional) distribution of κ2,i, θ2,i is still the
one prescribed by the S1 model (Eqs. (6.9), (6.8));

iii. Creation of edges, by connecting node pairs in each layer with the corresponding S1

connection probability, which depends exclusively on the assigned hidden variables
of nodes in each layer (Eqs. (6.24), (6.25));

iv. S1-to-H2 transformation, by mapping the hidden variables κ1,i, κ2,i to radial coor-
dinates r1,i, r2,i (Eqs. (6.26), (6.27)).

Below, we describe these steps in detail. We assume that the two layers have the same
number of nodes N1 = N2 = N . The extension of the framework to multiplexes with
different layer sizes is described in 6.5.1.

i. Assignment of hidden variables in layer 1. For each node i = 1, 2, . . . , N in layer 1
we sample its hidden variable κ1,i from the PDF

ρ1(κ1) = (γ1 − 1)κminγ1−1
1 κ−γ1

1 , (6.6)

κmin
1 = k̄1

γ1 − 2
γ1 − 1 , (6.7)

where k̄1 and γ1 > 2 are respectively the target average degree and power law degree
distribution exponent in layer 1. The angular coordinate θ1,i of each node i = 1, 2, . . . , N ,
is sampled from the uniform PDF

f(θ) = 1
2π , θ ∈ [0, 2π). (6.8)

ii. Assignment of hidden variables in layer 2. We now want to assign to each node
i = 1, 2, . . . , N its hidden variable κ2,i in layer 2, conditioned on the value of its hidden
variable κ1,i in layer 1. At the same time, we want the κ2,i’s to satisfy the marginal
(unconditional) PDF

ρ2(κ2) = (γ2 − 1)κminγ2−1
2 κ−γ2

2 , (6.9)

κmin
2 = k̄2

γ2 − 2
γ2 − 1 , (6.10)

where k̄2 and γ2 > 2 are respectively the target average degree and power law degree
distribution exponent in layer 2. Eq. (6.9) should be satisfied irrespectively of the cor-
relation strength between the κ2,i and κ1,i. To accomplish this, we sample the hidden
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variable κ2,i of each node i = 1, 2, . . . , N , from the conditional cumulative distribution
function (CDF)

Fν(κ2|κ1, {γ1, γ2, κ
min
1 , κmin

2 }) = e−(ϕ1/(1−ν)
1 +ϕ1/(1−ν)

2 )1−ν×

×
[
ϕ

1/(1−ν)
1 + ϕ

1/(1−ν)
2

]−ν ϕ
ν/(1−ν)
1 κmin

1 κγ1
1

κmin
1 κγ1

1 − κminγ1
1 κ1

,
(6.11)

ϕi =− ln
[
1− (κmin

i /κi)γi−1
]
, for i = 1, 2, (6.12)

where κ1 is the value of the hidden variable of the node in layer 1, {γ1, γ2, κ
min
1 , κmin

2 }
are the network parameters defined earlier, and ν ∈ [0, 1] is the correlation strength
parameter. The higher the value of ν the stronger is the correlation between κ2,i and
κ1,i. It is easy to see that when ν = 0 (no correlation between κ2,i and κ1,i), Eq. (6.11)
becomes the marginal CDF of κ2,i given in Eq. (6.16) below. On the other hand, when
ν → 1 (maximally correlated κ2,i and κ1,i), Eq. (6.11) becomes

Fν(κ2|κ1, {γ1, γ2, κ
min
1 , κmin

2 }) = Θ
[
κ2 − κmin

2

(
κ1
κmin

1

)(1−γ1)/(1−γ2)
]
, (6.13)

where Θ[x] denotes the Heaviside step function. That is, when ν → 1

κ2,i = κmin
2

(
κ1,i
κmin

1

)(1−γ1)/(1−γ2)
, (6.14)

which yields κ2,i = κ1,i if κmin
2 = κmin

1 and γ1 = γ2.
To derive Eq. (6.11) we use copulas [152]. Copulas are multivariate probability dis-

tributions used to describe the dependence between random variables. In particular,
any multivariate CDF F (κ1, ..., κn) of n random variables κ1, ..., κn, can be written in
the form F (κ1, ..., κn) = C(F1(κ1), ..., Fn(κn)) where F1(κ1), ..., Fn(κn) are the marginal
CDFs of F (κ1, ..., κn), and C is called a copula. Each of the marginals of C is uniform in
[0, 1], and there are many parametric copula families available, which have parameters
that control the strength of the dependence between the random variables [152].

In our case, the random variables are the node hidden variables κ1, κ2 in layers 1 and
2, whose marginal CDFs can be computed from Eqs. (6.6), (6.9),

F1(κ1) = 1− κ(1−γ1)
1 κmin(γ1−1)

1 , (6.15)
F2(κ2) = 1− κ(1−γ2)

2 κmin(γ2−1)
2 . (6.16)

For the copula function C, we use the bivariate Gumbel-Hougaard copula [152], defined
as

Cη(u, v) = e−[(− lnu)η+(− ln v)η ]1/η , (6.17)

η ≡ 1
1− ν ∈ [1,∞).
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Hence, our copula reads

Cη(F1(κ1), F2(κ2)) = e−[(− lnF1(κ1))η+(− lnF2(κ2))η ]1/η . (6.18)

The joint PDF of κ1 and κ2, ρη(κ1, κ2, {γ1, γ2, κ
min
1 , κmin

2 }), can be obtained by differen-
tiating the copula with respect to κ1, κ2,

ρη(κ1, κ2, {γ1, γ2, κ
min
1 , κmin

2 }) = ∂2Cη(F1(κ1), F2(κ2))
∂κ1∂κ2

, (6.19)

while the conditional PDF ρη(κ2|κ1, {γ1, γ2, κ
min
1 , κmin

2 }) can be written as

ρη(κ2|κ1, {γ1, γ2, κ
min
1 , κmin

2 }) = ρη(κ1, κ2, {γ1, γ2, κ
min
1 , κmin

2 }) 1
ρ1(κ1) . (6.20)

The conditional CDF Fη(κ2|κ1, {γ1, γ2, κ
min
1 , κmin

2 }) can be therefore computed as

Fη(κ2|κ1, {γ1, γ2, κ
min
1 , κmin

2 }) =
∫ κ2

κmin
2

dκ′ ρη(κ′|κ1, {γ1, γ2, κ
min
1 , κmin

2 })

= ∂Cη(F1(κ1), F2(κ2))
∂κ1

1
ρ1(κ1) ,

(6.21)

which yields Eq. (6.11).
The angular coordinate θ2,i of each node i = 1, 2, . . . , N in layer 2 is obtained by3

θ2,i = mod
[
θ1,i + 2πli

N
, 2π

]
, (6.22)

where θ1,i is the angular coordinate of the node in layer 1, and li is a directed arc length
on the S1 circle of radius R = N/2π, which is sampled from the zero-mean truncated
Gaussian PDF

fσ(l) =
1
σφ
(
l
σ

)
Φ
(
N
2σ

)
− Φ

(
− N

2σ

) , −N2 ≤ l ≤ N

2 , (6.23)

σ ≡ 100
(1
g
− 1

)
,

where φ(x) = 1√
2πe
− 1

2x
2 , Φ(x) =

∫
dxφ(x), σ ∈ (0,∞) is the variance of the PDF, and

g ∈ [0, 1] is the angular correlation strength parameter. The higher the value of g the
stronger is the correlation between θ2,i and θ1,i. When g → 0, σ → ∞, fσ(l) becomes
the uniform PDF, and θ2,i, θ1,i are not correlated. When g = 1, σ = 0, and li = 0,
meaning that the angles of each node i are identical in the two layers, θ2,i = θ1,i.

3Note that a rotation of the angular coordinates has no effect on the resulting system.
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iii. Creation of edges. Once all node hidden variables are assigned, we connect each
node pair i, j in layers 1 and 2 with the corresponding S1 connection probabilities given
in Eqs. (6.24), (6.25) below,

r1(κ1,i, θ1,i;κ1,j , θ1,j) = 1

1 +
[
d1(θ1,i,θ1,j)
µ1κ1,iκ1,j

] 1
T1

, (6.24)

d1(θ1,i, θ1,j) = N

2π∆θ1,ij ,

∆θ1,ij = |π − |π − |θ1,i − θ1,j |||,

µ1 = sinT1π

2k̄1Tπ
,

r2(κ2,i, θ2,i;κ2,j , θ2,j) = 1

1 +
[
d2(θ2,i,θ2,j)
µ2κ2,iκ2,j

] 1
T2

, (6.25)

d2(θ2,i, θ2,j) = N

2π∆θ2,ij ,

∆θ2,ij = |π − |π − |θ2,i − θ2,j |||,

µ2 = sinT2π

2k̄2T2π
,

where T1 ∈ [0, 1), T2 ∈ [0, 1) are the temperatures, which control clustering in each layer.
We recall that the average node clustering is maximized at temperature T = 0, and
nearly linearly decreases to zero with T ∈ [0, 1).

iv. S1-to-H2 transformation. Finally, we map the node hidden variables κ1,i, κ2,i in
layers 1, 2, to radial coordinates r1,i, r2,i using the relations below,

r1,i = R1 − 2 ln κ1,i
κmin

1
, R1 = 2 ln N

c1
, (6.26)

c1 = k̄1
sinT1π

2T1

(
γ1 − 2
γ1 − 1

)2
,

r2,i = R2 − 2 ln κ2,i
κmin

2
, R2 = 2 ln N

c2
, (6.27)

c2 = k̄2
sinT2π

2T2

(
γ2 − 2
γ2 − 1

)2
,

where κmin
1 , κmin

2 are given in Eqs. (6.7), (6.10).

6.2.5 Modeling more than two layers

To construct a multiplex network consisting of n layers (layer 1, layer 2, . . ., layer n),
we work in the same way as with the two-layer system described before. Specifically, for
each two consecutive layers j − 1, j, for 2 ≤ j ≤ n, we first fix their radial and angular
correlation strength parameters νj,j−1 ∈ [0, 1], gj,j−1 ∈ [0, 1] to some desired values.
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Subsequently, we assign hidden variables κ1,i, θ1,i to nodes in layer 1 as described earlier
(Eqs. (6.6), (6.8)), as well as hidden variables κ2,i, θ2,i to nodes in layer 2, conditioned on
κ1,i, θ1,i (Eqs. (6.11), (6.22)). Then, we continue by assigning hidden variables κj,i, θj,i to
nodes in layer 3 ≤ j ≤ n, conditioned on the values of the hidden variables κj−1,i, θj−1,i
of the nodes in layer j − 1. This conditional assignment is done in exactly the same
manner as the assignment of κ2,i, θ2,i, which is conditioned on the values of κ1,i, θ1,i.
Once all node hidden variables in all layers are assigned, we create edges in each layer
by connecting each node pair with the corresponding S1 connection probability (cf.
Eqs. (6.24), (6.25)). Finally, for each layer 1 ≤ j ≤ n, we map the node hidden variables
κj,i to radial coordinates rj,i as described earlier (cf. Eqs. (6.26), (6.27)). We use
this procedure to construct three- and four-layer multiplexes in the following, where
we always set the correlation strengths between subsequent layers to the same value,
νj,j−1 = ν ∈ [0, 1], gj,j−1 = g ∈ [0, 1], ∀j ≥ 2.

6.3 Geometric correlations lead to significant edge overlap
Radial and angular correlations across different layers naturally give rise to a significant
amount of edge overlap between the layers, as observed in many real multiplexes [62,121].
The edge overlap O between two layers (layer 1, layer 2) is formally defined as the ratio
of the number of overlapping (i.e., common) edges between the layers, to the maximum
possible number of common edges [153,154],

O = #(overlapping edges)
min[#(edges in layer 1),#(edges in layer 2)] . (6.28)

Fig. 6.1 shows the edge overlap in a synthetic two-layer multiplex as a function of
the radial and angular correlation strength parameters ν, g. We observe that the over-
lap increases as we increase the correlation strengths ν, g, and it is maximized at fully
correlated coordinates, ν = 1, g = 1. For uncorrelated coordinates, ν = 0, g = 0, the
overlap is minimized—it can be shown that when ν = 0, g = 0, the overlap vanishes in
the thermodynamic limit (N →∞), i.e., as the layer sizes increase.

The edge overlap also depends on the temperature of the layers. For fixed values of ν, g,
a higher overlap is achieved when the temperature of the layers is lower. Specifically, if
two layers have the same parameters N, γ, k̄, T , and ν = g = 1, i.e., the node coordinates
in the two layers are identical, then at T = 0 the edge overlap is 100%, i.e., the topologies
of the two layers are identical.

6.4 Geometric correlations increase routing performance
To investigate how radial and angular correlations affect the performance of mutual
navigation, we consider two-, three- and four-layer multiplexes constructed using the
modeling framework introduced earlier with different values of the correlation strength
parameters ν and g. Each layer consists of N = 30000 nodes, has a power law degree
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Figure 6.1: Edge overlap O in a two-layer synthetic multiplex as a function of the radial (ν)
and angular (g) correlation strengths. Each layer has N = 30000 nodes, power law
degree distribution P (k) ∼ k−2.5, k̄ = 10, and temperature T = 0.4.

distribution P (k) ∼ k−γ with γ = 2.5, average node degree k̄ = 10, and the same
temperature T that we vary in (0, 1). From Figs. 6.2–6.4 we observe that in general
both mutual GR and angular mutual GR perform better as we increase the correlation
strengths ν and g.4

When both radial and angular correlations are weak we do not observe any significant
benefits from mutual navigation. Indeed, in Fig. 6.5 we observe that in the uncorrelated
case (ν → 0, g → 0) mutual GR performs almost identical to the single-layer GR,
irrespectively of the number of layers. This is because when a message reaches a node in
one layer after the first iteration of the mutual GR process, the probability that this node
will have a neighbor in another layer that can get the message closer to the destination
is small. That is, even though a node may have more options (neighbors in other layers)
for forwarding a message, these options are basically useless.

Increasing the strength of correlations makes the different forwarding options that a
node has more useful, as the probability to have a neighbor that can get the message
closer to the destination in another layer increases. However, increasing the strength of
correlations also increases the edge overlap between the layers (as shown in the previous
section), which reduces the options that a node has for forwarding a message. We observe
that very strong radial and angular correlations may not be optimal at low temperatures
(cf. Figs. 6.2–6.4 for T = 0.1). This is because if the layers have the same nodes and
the same parameters k̄, γ, then as ν → 1, g → 1, the coordinates of the nodes in the

4Here we use the success rate as an indicator of the performance of mutual GR and angular mutual GR.
In appendix E.2 we show that the stretch (i.e. the ratio between the paths found by greedy routing
and the topologically shortest paths) is reduced if correlations are stronger. Hence, correlations
do not only increase the probability to reach a target but also make the successful deliveries more
efficient.
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Figure 6.2: Success rate of mutual GR (hyperbolic routing, left column) and of angular mutual
GR (angular routing, right column) for a two-layer multiplex system as a function
of the radial (ν) and angular (g) correlation strengths. Each layer has N = 30000
nodes, power law degree distribution P (k) ∼ k−2.5, k̄ = 10, and temperature
parameter T . From left to right, T = 0.8, 0.4, 0.1.

95



6 Hidden geometric correlations facilitate navigation

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

g

ν

0.65

0.70

0.75

0.80

0.85

0.90

P

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

g

ν

0.88

0.90

0.92

0.94

0.96

0.98

P

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

g

ν

0.88

0.90

0.92

0.94

0.96

0.98

P

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

g

ν

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

P

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

g

ν

0.980

0.985

0.990

0.995

P

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

g

ν

0.985

0.990

0.995

P

T
=
0
.1

T
=
0
.4

T
=
0
.8

AngularHyperbolic

Figure 6.3: Success rate of mutual GR (hyperbolic routing, left column) and of angular mutual
GR (angular routing, right column) for a three-layer multiplex system as a function
of the radial (ν) and angular (g) correlation strengths. Each layer has N = 30000
nodes, power law degree distribution P (k) ∼ k−2.5, k̄ = 10, and temperature
parameter T . From left to right, T = 0.8, 0.4, 0.1.
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Figure 6.4: Success rate of mutual GR (hyperbolic routing, left column) and of angular mutual
GR (angular routing, right column) for a four-layer multiplex system as a function
of the radial (ν) and angular (g) correlation strengths. Each layer has N = 30000
nodes, power law degree distribution P (k) ∼ k−2.5, k̄ = 10, and temperature
parameter T . From left to right, T = 0.8, 0.4, 0.1.
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Figure 6.5: Failure rate (1−success rate) of mutual GR (red triangles pointing downwards)
and angular mutual GR (yellow triangles pointing upwards). Each layer has N =
30000 nodes, power law degree distribution P (k) ∼ k−2.5, k̄ = 10, and the same
temperature T that takes different values, T = (0.1, 0.2, 0.4, 0.8, 0.9), corresponding
for each navigation type respectively, from the leftmost triangle to the rightmost
triangle. The left column corresponds to the case where there are no coordinate
correlations among the layers, while the right column correspond to the case where
there are optimal correlations, i.e., radial and angular correlation strengths that
maximize the corresponding performance of mutual GR or angular mutual GR.
From top to bottom we show the case of two, three, and four layers.
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Figure 6.6: Mitigation factor as a function of the number of layers for optimal coordinate cor-
relations and for uncorrelated coordinates.

layers become identical. If at the same time the temperature of the layers is T → 0,
the connection probability p(xij) in each layer becomes the step function, where two
nodes i, j are deterministically connected if their hyperbolic distance is xij ≤ R. That
is, as T → 0, ν → 1, g → 1, all layers become identical, and mutual GR degenerates
to single-layer GR. We observe (Figs. 6.2–6.4) that the best mutual GR performance is
always achieved at high angular correlations, and either high radial correlations if the
temperature of the individual layers is high, or low radial correlations if the temperature
of the layers is low. The best angular mutual GR performance is always achieved at high
angular and low radial correlations.

From Fig. 6.5 we observe that for a fixed number of layers the failure rate (1−success
rate) is reduced for optimal correlations5 by a constant factor, which is independent
of the navigation type (mutual GR or angular mutual GR) and the layer tempera-
ture. This factor, which we call failure mitigation factor, is the inverse of the slope of
the best-fit lines in Fig. 6.5. Fig. 6.6 shows the failure mitigation factor for our two-,
three-, and four-layer multiplexes for both uncorrelated and optimally correlated coor-
dinates. Remarkably, if optimal correlations are present, the failure mitigation factor
grows superlinerarly with the number of layers, suggesting that more layers with the
right correlations can quickly make multiplex systems almost perfectly navigable. On
the contrary, more layers without correlations do not have a significant effect on mutual
navigation, which performs virtually identical to single-layer navigation.

5With optimal correlations we refer to the values of ν, g where the respective routing success is maxi-
mized.
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Figure 6.7: Probability that a node (AS) exists in the IPv6 Internet given its degree in the
IPv4 Internet.

6.5 Geometric correlations and routing in the Internet
multiplex

Finally, we investigate how close to the optimal—in terms of mutual navigation performance—
are the radial and angular correlations in the IPv4/IPv6 Internet. To this end, we use
our framework to construct a two-layer synthetic multiplex, where layer 1 has approxi-
mately the same number of nodes as in the IPv4 topology, N1 = 37563 nodes, as well as
the same power law degree distribution exponent γ1 = 2.1, average node degree k̄1 ≈ 5,
and average clustering c̄1 ≈ 0.63. Layer 2 has approximately the same number of nodes
as in the IPv6 topology, N2 = 5163 nodes, and the same power law exponent γ2 = 2.1,
average node degree k̄2 ≈ 5.2, and average clustering c̄2 ≈ 0.55.

The IPv4 topology is significantly larger than the IPv6 topology, and there are 4819
common nodes (Autonomous Systems) in the two topologies. We find that nodes with
a higher degree in IPv4 are more likely to also exist in IPv6. Specifically, we find that
the empirical probability ψ(k) that a node of degree k in IPv4 also exists in IPv6 can be
approximated by ψ(k) = 1/(1 + 15.4k−1.05) (see Fig. 6.7). We capture this effect in our
synthetic multiplex by first constructing layer 1, and then sampling with the empirical
probability ψ(k) nodes from layer 1 that will also be present in layer 2. A visualization
illustrating the common nodes in the real Internet and in our synthetic multiplex is given
in Fig. 6.8. We note that the fact that nodes with higher degrees in the larger layer have
higher probability to also exist in the smaller layer has also been observed in several
other real multiplexes [138]. However, our model for constructing synthetic multiplexes
with different layer sizes is quite general, and allows for any sampling function ψ(k) to be
applied. We provide details of the extension of our model to multiplexes with different
layer sizes in the following.
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A B

Figure 6.8: A: Hyperbolic mapping of the real IPv4 topology where nodes marked by red also
exist in the IPv6 topology. B: Hyperbolic mapping of layer 1 of our Internet-like
synthetic multiplex, where nodes marked by red also exist in layer 2.

6.5.1 Model extension to multiplexes with different layer sizes

Here, we extend our framework to multiplexes with different layer sizes. Specifically, we
consider a two-layer multiplex with layers 1, 2, which have number of nodes N1, N2. We
assume that N1 > N2 and that there is a subset of Ncommon nodes in layer 1 that also
exist in layer 2, Ncommon ≤ N2. To construct the two-layer multiplex we follow the steps
below.

(i) Assignment of hidden variables in layer 1. For each node i = 1, 2, . . . , N1 in layer
1, we sample its hidden variable κ1,i as before, i.e., from the PDF ρ1(κ1) in Eq. (6.6),
and its angular coordinate θ1,i from the uniform PDFf(θ) in Eq. (6.8).

(ii) Determining the common nodes. We now need to decide the Ncommon nodes from
layer 1 that will also be present in layer 2. The simplest approach is to randomly select
(approximately) Ncommon nodes from layer 1, by sampling each node from layer 1 with
the same probability ψ,

ψ = Ncommon
N1

, (6.29)

and declaring each sampled node as a common node that will also exist in layer 2.
However, this random sampling approach may not be realistic. Indeed, as mentioned
before, nodes with a higher degree in the IPv4 Internet (larger layer) have a higher
probability to also exist in the IPv6 Internet (smaller layer). Fig. 6.7 shows the empirical
probability for a node (AS) to exist in the IPv6 Internet given its degree in the IPv4
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6 Hidden geometric correlations facilitate navigation

Internet. Recall that this probability can be approximated by

ψ(κ1) = 1
1 + 15.4κ−1.05

1
. (6.30)

A dependence of the probability that a node exists in different layers on the degree of the
node has also been observed in several other real multiplexes [138]. Therefore, a more
realistic and general approach is to sample each node from layer 1 with a probability
ψ(κ1) that is a function of its expected degree κ1,i, such that∫ ∞

κmin
1

dκ1ψ(κ1)ρ1(κ1) = Ncommon
N1

, (6.31)

where κmin
1 is given in Eq. (6.7). Here, we use the ψ(κ1) from Eq. (6.30) to sample

nodes from layer 1 that also exist in layer 2 of the synthetic multiplex that best mimics
the real IPv4/IPv6 Internet (Fig. 6.8). The sampling yields Ncommon ≈ 4800, which
is approximately equal to the number of common ASs (4819) in the real IPv4/IPv6
Internet.

iii. Assignment of hidden variables in layer 2. For the nodes i in layer 2 that do not
exist in layer 1 (non-common nodes), we sample their κ2,i’s from the unconditional PDF
ρ2(κ2) in Eq. (6.9), and their θ2,i’s from the uniform PDF f(θ) in Eq. (6.8). For the
common nodes, we assign hidden variables κ2,i, θ2,i, as described below.

We first compute the PDF ρ̃1(κ1) of the hidden variables κ1 of the common nodes,

ρ̃1(κ1) = ψ(κ1)ρ1(κ1)∫∞
κmin

1
dκ1ψ(κ1)ρ1(κ1) , (6.32)

and the CDF F̃1(κ1),
F̃1(κ1) =

∫ κ1

κmin
1

dκ′ρ̃1(κ′). (6.33)

Then, we compute the conditional CDF Fη(κ2|κ1, {γ1, γ2, κ
min
1 , κmin

2 }) in exactly the
same manner as in section 6.2.2, with the only difference that in place of F1(κ1) in
Eq. (6.15), we use the F̃1(κ1) that we compute in Eq. (6.33), and instead of ρ1(κ1) we
use ρ̃1(κ1). That is,

Fη(κ2|κ1, {γ1, γ2, κ
min
1 , κmin

2 }) = ∂Cη(F̃1(κ1), F2(κ2))
∂κ1

1
ρ̃1(κ1) , (6.34)

where Cη(u, v) is the Gumbel-Hougaard copula (Eq. (6.17)) and F2(κ2) is given in
Eq. (6.16). The hidden variable κ2,i of each common node i is then sampled from
the conditional CDF in Eq. (6.34). The angular coordinate of each common node θ2,i is
assigned using Eqs. (6.22), (6.23) with N = N2.

iv. Creation of edges. The creation of edges in each layer is performed as before
using the connection probabilities of the two layers in Eqs. (6.24), (6.25), with the only
difference that now d1(θ1,i, θ1,j) = N1

2π ∆θ1
ij and d2(θ2,i, θ2,j) = N2

2π ∆θ2
ij .
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Figure 6.9: κ2 as a function of κ1 at the limit ν → 1. The triangles denote the values of κ2 by
numerically evaluating Eq. (6.34) using the ψ(κ1) in Eq. (6.30) and the IPv4/IPv6
Internet parameters γ1 = γ2 = 2.1, κmin

1 = 0.84, κmin
2 = 1.30. The best-fit line

corresponds to κ2 = 1.11 + 0.22κ1.

v. S1-to-H2 transformation. Finally, we again map the node hidden variables κ1,i, κ2,i
in layers 1, 2, to radial coordinates r1

i , r
2
i using Eqs. (6.26), (6.27), with the difference

that now in these equations we have R1 = 2 ln N1
c1

and R2 = 2 ln N2
c2

.
The above framework can be extended to more than two layers in the same manner as

described in section 6.2.2. We note that when ψ(κ1) is the Internet’s ψ(κ1) in Eq. (6.30),
the conditional CDF in Eq. (6.34) can be approximated by

Fν(κ2|κ̃, {γ2, κ
min
2 }) = e−(ϕ̃1/(1−ν)+ϕ1/(1−ν)

2 )1−ν

×
[
ϕ̃1/(1−ν) + ϕ

1/(1−ν)
2

]−ν ϕ̃ν/(1−ν)κmin
2 κ̃γ2

κmin
2 κ̃γ2 − κminγ2

2 κ̃
, (6.35)

where

ϕ̃ = − ln
[
1−

(
κmin

2 /κ̃
)γ2−1

]
,

ϕ2 = − ln
[
1−

(
κmin

2 /κ2
)γ2−1

]
,

κ̃ = 1.11 + 0.22κ1, (6.36)

and κmin
2 is given in Eq. (6.10).

Eq. (6.36) is obtained by considering the maximally correlated case ν → 1, where
Eq. (6.34) converges to a Heaviside step function Fν(κ2|κ1, {γ1, γ2, κ

min
1 , κmin

2 }) = Θ [κ2 − κ̃].
That is, for ν → 1, κ2 ≈ 1.11 + 0.22κ1 ≡ κ̃. This relation is the analogue of Eq. (6.14),
and is obtained by numerically evaluating Eq. (6.34) at ν → 1, see Fig. 6.9. Once this
result is known, then for ν 6= 1, we can approximate Eq. (6.34) with Eq. (6.35), which
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Figure 6.10: Degree distribution (PDF) in layer 2 of our synthetic Internet-like multiplex
(Fig. 6.8) at correlation strengths ν = 0, 0.5, 1.

results from Eq. (6.11) if in place of κ1, γ1, κ
min
1 , we use κ̃, γ2, κ

min
2 . The idea behind this

approximation is that instead of directly correlating the κ2,i with the κ1,i via Eq. (6.34),
we correlate them via Eq. (6.35) with the corresponding values of κ2,i at the maximal
correlations (ν → 1), which in our case are given by κ2,i = 1.11 + 0.22κ1,i.

In our synthetic Internet-like multiplex (Fig. 6.8), we sample the hidden variables κ2,i
of the common nodes in layer 2 from the conditional CDF in Eq. (6.35). In Fig. 6.10, we
show the marginal PDFs of the κ2,i of the common nodes at correlation strengths ν = 0
(no correlations, where the κ2,i are sampled from their marginal CDF), ν = 0.5 (partial
correlations, where the κ2,i are sampled from the conditional CDF in Eq. (6.35)), and
ν = 1 (full correlations, where the κ2,i are directly obtained by Eq. (6.36)). In all cases,
the marginal PDFs are nearly identical, validating the approximation described above.

6.5.2 Estimation of the radial and angular correlation strengths νE, gE in
the IPv4/IPv6 Internet

We now estimate which values of the model parameters ν and g represent the strength of
radial and angular correlations in the real Internet. To estimate the empirical νE , we first
compute the Pearson correlation coefficient between the inferred radial coordinates of
common nodes (ASs) in the IPv4/IPv6 Internet. Then, we compute the same coefficient
between the radial coordinates of common nodes in our synthetic Internet-like multiplex,
at various radial correlation strengths ν ∈ [0, 1]. The value of ν where the two coefficients
are equal is the estimated value of νE . Fig. 6.11A shows the results, where we obtain
νE ≈ 0.4.

To estimate gE , we reconstruct IPv4-like and IPv6-like topologies as follows. We
first consider all nodes in the real IPv4 topology with their inferred radial and angular
coordinates, and connect each pair of nodes with the Fermi-Dirac connection probability
p(xij) in Eq. (6.5), using the estimated temperature of the IPv4 topology, T1 = 0.5, and
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Figure 6.11: Estimation of νE , gE in the IPv4/IPv6 Internet. A. Pearson correlation coefficient
between the inferred radial coordinates of common ASs in the IPv4/IPv6 Internet
(straight dashed line), and in our synthetic Internet-like multiplex at various radial
correlation strengths ν. The two coefficients are equal at ν ≈ 0.4 ≡ νE . B.
Edge overlap O between reconstructed IPv4 and IPv6 topologies with inferred
radial and angular coordinates (straight dashed line), and with synthetic angular
coordinates for the common nodes in IPv6, at various correlation strengths g with
their inferred IPv4 angles. The two overlaps are equal at g ≈ 0.4 ≡ gE .

such that the resulting network has the same average degree and power law degree
distribution exponent as the real IPv4 topology, k̄1 ≈ 5, γ1 = 2.1. Subsequently, we
consider all nodes in the real IPv6 topology. We assign to these nodes their inferred
radial coordinates. For the nodes that also exist in IPv4, their angular coordinates are
assigned using Eqs. (6.22), (6.23), and are correlated to their real angular coordinates
in IPv4, using different correlation strengths g ∈ [0, 1]. The angular coordinates of
the non-common nodes are set equal to their inferred angular coordinates. Then, we
connect each pair of nodes in IPv6 with the Fermi-Dirac connection probability p(xij)
in Eq. (6.5), using the estimated temperature of the IPv6 topology, T2 = 0.5, and
such that the resulting network has the same average degree and power law degree
distribution exponent as the real IPv6 topology, k̄2 ≈ 5.2, γ2 = 2.1. For the different
values of g, we evaluate the edge overlap O (Eq. (6.28)) between the reconstructed IPv4
and IPv6 topologies. The value of g that matches the edge overlap obtained when we
reconstruct the IPv6 topology with all nodes having their inferred angular coordinates
is the estimated value of gE . Fig. 6.11B shows the results, where we obtain gE ≈ 0.4.

6.5.3 Correlations present in the Internet multiplex improve navigability

For the nodes that exist in both layers of our multiplex, we tune the correlations among
their coordinates as before, by varying the parameters ν and g. For each ν, g pair, we
perform mutual navigation among 105 randomly selected source-destination pairs that
exist in both layers. Fig. 6.12 shows respectively the performance of angular mutual GR
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Figure 6.12: Performance of mutual navigation as a function of radial and angular correla-
tion strengths (ν, g) in a two-layer synthetic multiplex that best mimics the real
IPv4/IPv6 Internet. The black star indicates the achieved performance with the
estimated correlation strengths in the real IPv4/IPv6 Internet, νE ≈ 0.4, gE ≈ 0.4.
A: Performance of angular mutual GR. B: Performance of mutual GR.

and of mutual GR. We observe again that increasing the correlation strengths improves
performance. In angular mutual GR, the success rate is 63% with uncorrelated coordi-
nates, while with optimal correlations it becomes 75%. In mutual GR, the success rate
with uncorrelated coordinates is 85% and with optimal correlations is 91%. The star in
Fig. 6.12 indicates the achieved performance with the empirical correlation strengths in
the IPv4/IPv6 Internet, νE ≈ 0.4, gE ≈ 0.4, which are the empirical values estimated
earlier. At ν = νE , g = gE , the success rate of angular mutual GR is 71%, which is
closer to the rate obtained with optimal correlations than to the uncorrelated case. For
mutual GR, the success rate is 88%, which lies in the middle between the uncorrelated
and optimally correlated case.

6.6 Summary: Hidden geometric correlations facilitate
navigation

In the previous chapter we found that node coordinates in different layers of real multi-
plexes embedded into hyperbolic spaces are correlated, hence the underlying hyperbolic
distances in the constituent layers are also correlated.

In this chapter, we have focused on mutual navigation, which uses the coordinates and
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connectivity of nodes in different layers to reach intended communication targets. We
have shown that trans-layer geometric correlations improve the performance of mutual
navigation, which outperforms navigation in the single layers only if these correlations
are sufficiently strong. Our results also reveal that having more layers with the right
correlations can quickly make multiplex systems almost perfectly navigable. On the
contrary, more layers without correlations do not improve mutual navigation.

Our findings can have important applications for improving information transport
and navigation or search in multilayer communication systems and decentralized data
architectures [22,30].
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Summary and outlook

“We all decided to walk through the same door
on the Internet so we could think together.”

Alec Couros

This chapter contains parts adapted from my publications [40,89,102,116].

The emergence of Web 2.0 reshaped the digital landscape. Instead of there being only
a few producers of content and many consumers, now nearly every Internet user also
produces content. This is especially the case with online social networks, which have
grown rapidly and nowadays include more than 2 billion users worldwide. These systems
are key players in the Web 2.0 cosmos, where they evolve and compete in the absence
of central control. Hence, tools, ideas, and techniques from the analysis of complex
systems are suitable to describe the evolution of and competitive interactions between
online social networks.

The digital world consists of highly connected and strongly coupled interacting sub-
systems. Those basic building blocks are single networks, each of which obeys specific
dynamics in the absence of coupling to the whole system. So the complexity of the dig-
ital world is a consequence of both the dynamics of networks in isolated environments
and the interactions between many such networks. Finally, not all of the building blocks
are identical. Instead, different networks address different peer groups or have different
functionalities. Hence, to reveal the fundamental mechanisms that determine the fate of
the digital world, it is necessary to understand the interaction of heterogeneous networks,
each driven by its own intrinsic dynamics. To meet this challenge, we started analyzing
the evolution of online social networks in isolation. Building on that knowledge, we then
studied competition between a priori identical networks, and the dichotomy consisting
of coexistence and domination, in analogy to ecology theory. Finally, we describe com-
petition between local networks and an international network, for which we had to take
into account the network of interactions between different countries.

We found that the evolution of isolated online social networks follows an intricate
path. The system is not connected globally from the beginning, but instead undergoes a
dynamical percolation transition. This remarkable behavior rules out the adequateness
of models based on preferential attachment, as such networks are either connected or
not – they do not exhibit dynamical transitions. We have shown that the evolution of
online social networks is governed by social networks that existed long before the inven-
tion of the Internet. These offline social networks underlie the formation of online social
networks in a two-layer model. The dynamics of this system is governed by two main
mechanisms: a dynamics of viral spreading and the influence of mass media. The former
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is similar to the SIS model known from epidemic spreading; the latter is a homogeneous
influence that triggers random subscriptions among the population susceptible to partic-
ipate in online social networks. The model exhibits a dynamical percolation transition as
observed in the “Pokec”6 network. We chose the final snapshot of the empirical network
as a proxy for the pre-existing underlying social structure in our model and were able
to reproduce the entire topological evolution of the empirical network with astonishing
precision. The viral spreading and media influence mechanisms play complementary
roles in the connectivity structure of the network. The viral dynamics tend to connect
components, whereas the media effect tends to create new, disconnected components.
Hence, the balance between the relative strengths of these two mechanisms governs the
position of the dynamical percolation transition in our model. We found that, to match
the empirical evolution, the influence of one active friend in terms of the viral spreading
dynamics is four to five times stronger than the influence of mass media.

Although the model precisely reproduces many topological features of the empirical
network, such as the number of components, mean degree, the dynamical percolation
transition and its critical point, and the evolution of the average shortest path length
as well as network diameter, there is a strong disagreement when it comes to local
topological quantities such as mean local clustering. This shortcoming indicates that at
local scales our model lacks an important feature. We have shown that this feature is
the strength of social ties, for which we follow the definition of Granovetter, the author
of the “strength of weak ties” hypothesis. By comparing our model with the empirical
evolution of the “Pokec” network, we find that indeed weaker social ties exhibit higher
transmissibility for the viral spreading process. So, the extended version of our model
takes into account the strength of social ties and reproduces well the global and local
topological properties of the empirical network.

In reality, most online social networks do not evolve in isolation. Instead, they com-
pete with other digital services for the attention of users, which is bounded due to the
cognitive and physical limitations of individuals. We consider this attention to be a
scarce resource and networks to be competing species in a digital ecosystem. Following
this line of reasoning, we considered whether multiple online social networks can coexist
or if the competitive interaction always leads to the domination of a single network. We
considered a priori identical networks and assumed that users are more likely to engage
in more active networks. This rich-get-richer effect creates a positive feedback loop, sim-
ilar to preferential attachment. Interestingly, we found that despite the rich-get-richer
effect, multiple networks can coexist depending on the parameters that describe the total
virality (which represents the total amount of attention or time of individuals) and the
activity affinity (which describes how much more likely individuals are to engage in more
active networks). We found that at a critical point of the activity affinity, the system
undergoes a subcritical pitchfork bifurcation such that coexistence is only possible in the
subcritical regime. This type of bifurcation induces a hysteresis effect which means that
once coexistence or digital diversity is lost, it cannot be recovered. Multistability in the
subcritical regime in combination with noise present in the full stochastic model have

6Pokec is a very large and popular OSN in Slovakia. See section 2.2 on page 19 for details.
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interesting implications. Starting from empty networks, a stable coexistence solution
is not always reached. In particular, we found that for large values of the virality, the
effective critical line that determines the region in which coexistence is reached with
a probability of at least 50% saturates at constant values of the activity affinity, com-
pared to the linear relationship of the stability region. This is of great importance when
considering many networks, as the effective critical lines corresponding to the coexis-
tence of a larger number of networks saturate to lower values of the activity affinity
respectively. This means that without precise knowledge of the empirical parameters,
our model explains the observation that there is a moderate number of coexisting digital
services in agreement with empirical observations. Finally, the probability of reaching
the coexistence solution depends on the relative strength of the influence of mass media.
We found that a larger influence of mass media increases the chance of coexistence and
hence augments the observed digital diversity.

We have seen how networks can coexist despite a rich-get-richer mechanism that pro-
vides more active networks with the benefit of more attention. However, we have con-
sidered all networks as a priori identical, which is not the case in reality. Especially the
rise to supremacy of Facebook and the extinction of many local networks can only be
explained by taking into account the intrinsic heterogeneity of networks. In the com-
petition between local networks and an international network, the latter provides users
with the possibility of connecting to individuals from other countries. This fact effec-
tively gives the international network an advantage over local ones that is similar to an
increased intrinsic fitness. Hence, one has to take into account the interaction network
between different countries, which leads to a network of multilayer networks. In addition,
compared to the case of identical networks, the symmetry of the bifurcation is broken,
which gives rise to a saddle-node bifurcation instead of a subcritical pitchfork bifurca-
tion. We showed that depending on the abundance of inter-country social ties, which we
refer to as global connectivity, and the activity affinity, there are regions of qualitatively
distinct behavior. Local networks can coexist alongside the international network for low
activity affinity and global connectivity. For intermediate activity affinity and especially
for high global connectivity, the international network always dominates. For high values
of the activity affinity and low values of the global connectivity, local networks dominate
if they are launched before the international network, which we assume to be the case
in each country except the US. Interestingly, between the regions of the domination of
local networks and the domination of the international network a region exists in which
the final state of the system varies randomly between different realizations. In this re-
gion, which we call the “coinflip region”, only the domination of either local networks
or the international network is possible. Which of these solutions is approached is up to
chance. We compared the evolution of the number of countries where local networks are
the most popular services predicted by our model with empirical data and found that
the most probable parameters lie in the coinflip region with a slight advantage towards
the international network. In particular, for these parameters, local networks dominate
in 30% of the cases whereas in the remaining 70% the international network ends up
dominating. Hence, the global overtake of Facebook could have not taken place with a
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Figure 6.13: Overview of the evolution and ecology of the digital world organized by size.

significant probability. Results of this type should warn us against the comparison of
single realizations of stochastic processes, in particular those with strong non-linearities,
such as the one we study here.

We have described the evolution and competitive interaction of online social networks
ranging from individual ties to globally interacting networks (see Fig. 6.13). Our model
can be extended to include several internationally operating networks that are constantly
evolving in analogy to natural systems. This can result in random fluctuations of the
intrinsic fitness of networks and lead to a theory of Darwinian selection in the digital
ecosystem. A deep understanding of the digital ecosystem is crucial to sustain diversity
in the digital world, which is a requisite for the freedom of information and a “digital
democracy”.

Recently, decentralized architectures have attracted a lot of attention; for example, the
virtual currency Bitcoin [29]. Such systems provide better scalability, more transparency,
and by design cannot be controlled by central entities. Hence, decentralized systems will
play an important role in future digital architectures [12, 30]. Such systems have to
function without central control and hence require solutions to particular challenges,
such as search and navigation relying only on local information (greedy routing). We
studied this case explicitly in terms of geometric spaces and geometric correlations in
multiplex networks.
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It has been shown that many complex networks have an effective hyperbolic geome-
try underlying their observed topologies, where node coordinates are abstractions of the
popularity and similarity of nodes. Furthermore, real networks are often not isolated
entities but instead form interacting parts of larger and more complex systems, called
multiplex or multilayer networks. Examples of such systems can be found in drastically
different domains. The most classic example is provided by the different social net-
works that a person may belong to. Other examples are the structural and functional
connections in the brain, or the IPv4 and IPv6 Internet topologies.

We found that different real multiplex systems, including brain networks, protein in-
teraction networks, the Internet, and scientific collaboration networks, are not random
combinations of single networks. Instead, we found that their constituent network layers
exhibit strong geometric correlations. Specifically, each constituent network layer can be
mapped into its own hyperbolic space; node coordinates in this space are abstractions
of the popularity and similarity of nodes. The probability of the existence of an edge
between two nodes in then a monotonically decreasing function (the Fermi-Dirac distri-
bution) of their hyperbolic distance. Real networks can be embedded within hyperbolic
space by techniques based on Maximum Likelihood Estimation to infer the popularity
and similarity node coordinates. From the hyperbolic maps constructed for a single
network, one can: identify soft communities of nodes, which are groups of nodes located
close to each other in the angular similarity space [84, 126, 130]; predict missing links
with high precision [127,128,130]; and facilitate efficient greedy routing. We found that
node coordinates are strongly correlated across layers of real multiplexes, meaning that
distances between nodes in the underlying hyperbolic spaces of the constituent network
layers are also strongly correlated.

The geometric correlations we discovered yield a very powerful and general framework
for understanding and analyzing real multiplex systems. One can use this framework
to define and detect multidimensional communities, which are sets of nodes that are
simultaneously similar in multiple layers. Nodes are considered similar in a certain layer
if they are located at a small angular distance within that layer. Clusters of nodes that
are simultaneously similar in different layers are overabundant compared to a random
superposition of the constituent layer topologies. These clusters form multidimensional
communities. In addition, the geometric framework allows us to quantify the degree of
similarity between different communities, which is related to the multidimensional angu-
lar distance between them. The existence of geometric correlations furthermore enables
accurate trans-layer link prediction, where connections in one layer can be predicted by
observing the geometric space of another layer. In particular, nodes that are located
at a small hyperbolic distance in one layer have a high probability of being close in a
different layer and hence the probability that they are connected in that layer is high
as well. As a consequence, knowing the hyperbolic distance in one layer allows us to
predict the connection probability in a different layer.

We developed a model to create multiplex networks with geometric correlations. In
our model, angular and radial correlations can be tuned individually and independently
from the topological properties of the constituent layers. We created correlations of
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the hidden variables of nodes using copula techniques. We specifically accounted for
different layer sizes, which occurs in the case of the IPv4/IPv6 Internet multiplex. In
particular, high-degree nodes in the larger layer have a high probability of also existing
in the smaller layer. The model allows us to explicitly study the effect of correlations on
the performance of mutual greedy routing.

In greedy routing, nodes forward a message to their neighbor that is closest to the
final destination in geometric space. The message either reaches its target, or it enters a
loop, i.e. the message is given back to a node it already visited, and the delivery fails. To
study navigation in multiplex systems, we extend the notion of greedy routing so that a
node forwards a message to its neighbor that is closest to the destination in any of the
layers comprising the system. We call this process mutual greedy routing. Interestingly,
mutual greedy routing outperforms navigation in the constituent networks alone only
if the geometric correlations are sufficiently strong. We show this explicitly for the ex-
ample of the Internet, for which we create synthetic multiplexes whose individual layer
topologies mimic those from the empirical data and where we can tune the geometric
correlations. By comparing our model with the coordinates inferred from the empirical
data, we are able to quantify the correlations present in the real Internet. These corre-
lations indeed improve the mutual navigability of the system significantly for navigation
using both hyperbolic and angular distances. We also studied the case of more than two
network layers. Having more layers with the right correlations can quickly make multi-
plex systems almost perfectly navigable. In contrast, more layers without correlations
do not improve mutual navigation.

Our findings can lead to a variety of applications in many disciplines, ranging from
improving information transport and navigation in multilayer communication systems
and decentralized data architectures, to understanding functional and structural net-
works in the brain and deciphering their precise relationship(s). They may also allow us
to predict links among nodes, such as terrorists, in a specific network, by only knowing
their connectivity in some other network.

In summary, in this thesis we dealt with challenges facing an interconnected world
strongly influenced by the recent digital revolution. The rise of the Internet has con-
nected individuals on unprecedented scales and Web 2.0 promotes worldwide collabora-
tion and the nearly instantaneous exchange of ideas. However, the dominance of a few
powerful information monopolies poses a threat to the freedom of both ideas and the
decisions of individuals. Two factors are therefore essential for a prosperous future in
the digital age: digital diversity and decentralization. Concerning the former, we intro-
duced a set of models based on empirical observations, which improve understanding of
the dynamics of and competitive interactions between online social networks: the key
players in the Web 2.0 cosmos. In particular, our findings shed light on the conditions
under which digital diversity can be sustained. Concerning the latter, the design of de-
centralized architectures poses certain challenges, among which we specifically addressed
search and navigation with only local knowledge. We revealed under which conditions
the existence of many interacting networks facilitates these tasks. Interestingly, many
real systems fulfill these conditions. To conclude, from a system-level perspective, a
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prosperous future in the digital age comprised of a diverse digital landscape with inter-
acting, decentralized architectures is possible; but so is the opposite. It remains a task
for society to create sufficient awareness and the correct incentives to create the future
we desire. I hope that our findings will help to accomplish this ambitious and important
endeavor.
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Resumen en castellano
La invención de la Web 2.0 ha cambiado totalmente el mundo digital. Antes, unos pocos
eran creadores de contenido y los demás simplemente lo consumı́an. En la Web 2.0 casi
todos los usuarios de Internet producen contenido. Esto es especialmente cierto para las
redes sociales online que han crecido rápidamente y actualmente cubren más que dos mil
millones de usuarios a nivel mundial. Estos sistemas son los actores clave en el cosmos
de la Web 2.0 en el que se desarrollan y compiten en ausencia de un control centralizado.
Por tanto, herramientas, ideas y técnicas de análisis de sistemas complejos son útiles y
especialmente adecuadas para describir la evolución y competición entre redes sociales
online.

El mundo digital se compone de subsistemas que interaccionan entre ellos y que están
fuertemente acoplados. Estos componentes básicos son redes individuales, y cada una
obedece una dinámica intŕınseca en ausencia de acoplamiento con el resto del sistema.
Por lo tanto, la complejidad del mundo digital es una consecuencia tanto de la dinámica
de las redes en aislamiento como de la interacción entre muchas redes. Además, no
todos los componentes básicos son idénticos. Diferentes redes atraen diferentes grupos de
personas o tienen diferentes funcionalidades. Por lo tanto, para identificar los mecanismos
fundamentales que determinan el destino del mundo digital, es necesario entender la
interacción entre redes heterogéneas, de las que cada una sigue una dinámica intŕınseca.
Para afrontar este reto, comenzamos con el análisis de la evolución de las redes sociales
online en aislamiento. Basándonos en este conocimiento, investigamos la competición
entre redes a priori idénticas y estudiamos la dicotomı́a entre coexistencia y dominación
en analoǵıa con la ecoloǵıa. Por último, describimos la competición entre redes locales y
una red internacional, para lo cual tuvimos que tener en cuenta la red de interacciones
entre diferentes páıses.

Hemos encontrado que la evolución de las redes sociales online aisladas sigue un ca-
mino particular. El sistema no está conectado a nivel global desde el principio, sino que
exhibe una transición de percolación dinámica. Este comportamiento descarta mode-
los como preferential attachment ya que este tipo de redes no exhiben una transición
dinámica – están conectadas o no lo están. Hemos demostrado que la evolución de redes
sociales online se rige por las redes sociales que exist́ıan mucho antes de la invención
del Internet. Estas redes sociales offline subyacen bajo la formación de redes sociales
online en un modelo de dos capas. La dinámica de este sistema tiene dos mecanismos
principales: una dinámica de propagación viral y la influencia de los medios centrales de
comunicación. La primera es similar al modelo de SIS conocido a partir de propagación
de epidemias y la última representa la influencia homogénea que causa suscripciones
al azar entre la población susceptible de participar en redes sociales online. El modelo
muestra una transición de percolación dinámica igual que en la evolución emṕırica de la
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red “Pokec”. Elegimos la configuración final de la red emṕırica como un representante de
la estructura social subyacente preexistente en nuestro modelo que nos permitió repro-
ducir con mucha precisión toda la evolución topológica de la red emṕırica. El mecanismo
viral y la influencia de los medios de comunicación tienen un efecto complementario pa-
ra la conectividad de la red. La dinámica viral tiende a conectar componentes mientras
que el efecto mediático tiende a crear nuevos componentes desconectados. Por lo tanto,
el equilibrio entre las fuerzas relativas de estos dos mecanismos regula la posición de
la transición de percolación dinámica en nuestro modelo. Encontramos que para que
coincida con la evolución emṕırica, la influencia de un amigo activo, en términos de la
dinámica de propagación viral, es entre cuatro y cinco veces más fuerte que la influencia
de los medios de comunicación.

A pesar de que el modelo reproduce muchas caracteŕısticas topológicas de la red
emṕırica, incluyendo el número de componentes, el grado medio, la transición de perco-
lación dinámica y su punto cŕıtico, la evolución de la longitud media del camino más corto
y el diámetro de la red, existe un desacuerdo respecto a las medidas topológicas locales
como el mean local clustering. Esta limitación indica que a escala local nuestro modelo
carece de una caracteŕıstica importante. Hemos demostrado que esta caracteŕıstica es la
fuerza de los enlaces sociales que cuantificamos seguiendo la definición de Granovetter,
el autor de la hipótesis de la “fuerza de los enlaces debiles”. Al comparar el resultado
de nuestro modelo con la evolución emṕırica de la red “Pokec”, encontramos que los
enlaces sociales más débiles muestran una transmisibilidad mayor para el proceso de
propagación viral. La versión extendida de nuestro modelo tiene en cuenta la fuerza de
los enlaces sociales y reproduce bien las propiedades topológicas globales y locales de la
red “Pokec”.

En realidad, la mayoŕıa de las redes sociales online no evoluciona de forma aislada. Al
contrario, las redes compiten con otros servicios digitales por la atención de los usuarios,
que está limitada debido a razones cognitivas y f́ısicas de las personas. Esta atención
la consideramos como un recurso escaso por el cual las redes, que representan diferen-
tes especies, compiten en un ecosistema digital. Con este razonamiento, respondemos
a la pregunta de si múltiples redes sociales online pueden coexistir o si la interacción
competitiva siempre lleva a la dominación de una sola red. Hemos considerado redes a
priori idénticas y asumimos que los usuarios son más propensos a involucrarse en las
redes más activas. Este efecto rich-get-richer crea una retroalimentación positiva, simi-
lar a preferential attachment. Sorprendentemente, encontramos que a pesar del efecto
rich-get-richer múltiples redes pueden coexistir en función de los parámetros que des-
criben la viralidad total (representa la atención total o el tiempo de las personas) y la
afinidad de actividad (describe cuanto más las personas prefieren interactuar con redes
más activas). Hemos encontrado que en un punto cŕıtico de la afinidad de actividad,
el sistema exhibe una bifurcación pitchfork subcŕıtica de tal manera que la coexisten-
cia sólo es posible en el régimen subcŕıtico. El tipo de bifurcación induce un efecto de
histéresis, que significa que una vez que se pierde la coexistencia o diversidad digital éste
no se puede recuperar. La multiestabilidad en el régimen subcŕıtico en combinación con
el ruido presente en el modelo estocástico tiene implicaciones interesantes. A partir de
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las redes inicialmente vaćıas, el sistema no siempre llega a una solución de coexistencia
aunque aquella sea estable. En particular, encontramos que para grandes valores de la
viralidad la ĺınea cŕıtica efectiva que determina la región en la que el sistema alcanza
la coexistencia con una probabilidad de al menos 50 % satura a valores constantes de la
afinidad de actividad; al contrario de la relación lineal de la región de estabilidad de la
solución de coexistencia. Esto es muy importante cuando se consideran varias redes ya
que las ĺıneas cŕıticas efectivas de soluciones de coexistencia de números más altos de
redes saturan a valores más bajos de la afinidad de actividad respectivamente. Esto signi-
fica que, sin conocimiento preciso de los parámetros emṕıricos, nuestro modelo explica la
coexistencia de un número moderado de servicios digitales, de acuerdo con observaciones
emṕıricas. Finalmente, la probabilidad de llegar a la solución de la coexistencia depende
de la fuerza relativa de la influencia de los medios de comunicación. Hemos encontrado
que un efecto mediático más fuerte aumenta la probabilidad de coexistencia y entonces
aumenta la diversidad digital observada en el sistema.

Hemos mostrado que varias redes pueden coexistir a pesar de un efecto rich-get-richer
que beneficia a las redes más activas. Sin embargo, hasta ahora, hemos considerado
que todas las redes son a priori idénticas, algo que claramente no se corresponde con
la realidad. Especialmente, la dominación de Facebook y la extinción de muchas redes
locales sólo se puede explicar teniendo en cuenta la heterogeneidad intŕınseca de las
redes. En la competición entre redes locales y una red internacional, esta última les da a
sus usuarios la posibilidad de conectar con personas de otros páıses. Efectivamente este
hecho da una ventaja a la red internacional sobre las locales similar a un aumento de la
fitness intŕınseca. Por lo tanto, uno tiene que tener en cuenta la red de interacciones entre
diferentes páıses que conduce a una red de redes multi-capa. Además, en comparación con
el caso de redes idénticas, la heterogeneidad de fitnesses intŕınsecas rompe la simetŕıa de
la bifurcación y da lugar a una bifurcación saddlenode en lugar de la bifurcación pitchfork
subcŕıtica. Hemos demostrado que, dependiendo de la abundancia de los enlaces sociales
entre páıses, que llamamos conectividad global, y la afinidad de actividad hay regiones
de comportamientos cualitativamente distintos. Redes locales pueden coexistir con la
red internacional si la afinidad de actividad y la conectividad global son bajas. Para una
afinidad de actividad intermedia y especialmente para valores altos de la conectividad
global, la red internacional siempre domina. Para valores altos de la afinidad de actividad
y bajos de la conectividad global las redes locales dominan si nacen antes de la red
internacional, que suponemos que es el caso en cada páıs, excepto los Estados Unidos.
Curiosamente, entre las regiones de la dominación de las redes locales y la dominación
de la red internacional existe una región en la que el estado final del sistema cambia al
azar entre las diferentes realizaciones. En esta región, que llamamos la región coinflip,
sólo la dominación de las redes locales o de la red internacional es posible. Cual de
estas soluciones es alcanzada por el sistema depende del azar. Comparamos la evolución
del número de páıses en los que las redes locales son los servicios más populares según
la predicción del modelo con los datos emṕıricos y encontramos que los parámetros
más probables se encuentran en la región coinflip con una ligera ventaja hacia la red
internacional. En particular, para estos parámetros las redes locales dominan en un 30 %
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de los casos, mientras que en los restantes 70 % la red internacional acaba dominando.
Por lo tanto, la dominación mundial de Facebook podŕıa no haber tenido lugar con una
probabilidad significativa. Este tipo de resultados muestra que hay que tener cuidado al
comparar realizaciones individuales de procesos estocásticos, en particular los altamente
no lineales, como los que investigamos aqúı.

Hemos desarrollado una descripción de la evolución y la interacción competitiva de
las redes sociales online desde la escala de enlaces individuales hasta un sistema de
redes que interactuan globalmente. Es posible extender nuestro modelo para incluir
varias redes que operan a nivel internacional y que están en constante evolución en
analoǵıa con los sistemas naturales. Esto puede dar lugar a fluctuaciones aleatorias de
la aptitud intŕınseca de las redes y dar lugar a una teoŕıa de selección darwiniana en
un ecosistema digital. Un profundo conocimiento del ecosistema digital es crucial para
preservar la diversidad en el mundo digital; un requisito para la libertad de información
y una democracia digital.

Recientemente, las arquitecturas descentralizadas han atráıdo mucha atención; por
ejemplo, la moneda virtual Bitcoin [29]. Tales sistemas proporcionan una mejor esca-
labilidad, mayor transparencia y por diseño no pueden ser controladas por entidades
centralizadas. Por lo tanto, los sistemas descentralizados jugarán un papel importan-
te en las futuras arquitecturas digitales [12, 30]. Estos sistemas tienen que funcionar
sin control central y por lo tanto requieren soluciones a problemas particulares, como la
búsqueda y la navegación con únicamente información local (greedy routing). Estudiamos
este caso expĺıcitamente en términos de espacios geométricos y correlaciones geométricas
en redes multicapa.

Se ha demostrado que muchas redes complejas tienen una geometŕıa hiperbólica efec-
tiva debajo de sus topoloǵıas observadas, donde coordenadas de nodos representan la
popularidad y la similaridad de nodos. Además, las redes reales normalmente no son
entidades aisladas sino que forman parte de sistemas más grande y complejos, llama-
dos redes múltiplex o multicapa. Ejemplos de tales sistemas se encuentran en dominios
drásticamente diferentes. El sistema más clásico está compuesto por diferentes redes so-
ciales a las que una persona pertenece. Otros ejemplos son las conexiones estructurales
y funcionales en el cerebro, o las topoloǵıas IPv4 e IPv6 de Internet.

Hemos encontrado que diferentes sistemas reales múltiplex, incluidas las redes cerebra-
les, las redes de interacción de protéınas, Internet y redes de colaboración cient́ıfica, no
son combinaciones aleatorias de sus redes constituyentes. Por el contrario, encontramos
que su redes constituyentes exhiben fuertes correlaciones geométricas. Espećıficamente,
cada red constituyente puede ser mapeada en su propio espacio hiperbólico, en el que las
coordenadas de los nodos representan su popularidad y su similaridad. La probabilidad
de la existencia de un enlace entre dos nodos es una función continua monótonamente
decreciente (la distribución de Fermi-Dirac) de su distancia hiperbólica. A través de los
mapas hiperbólicos construidos para una sola red se puede identificar comunidades de
nodos, que son grupos de nodos situados cerca uno del otro en el espacio de similaridad
angular [84, 126, 130]; predecir las enlaces que faltan con alta precisión [127, 128, 130]; y
facilitar el greedy routing de forma eficiente. Encontramos que las coordenadas de nodos
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en diferentes capas están fuertemente correlacionadas, lo que significa que las distancias
entre los nodos en los espacios hiperbólicos subyacentes a las redes constituyentes están
también fuertemente correlacionadas.

Las correlaciones geométricas descubiertas representan una herramienta potente para
entender y analizar sistemas multiplex reales. Se puede utilizar para definir y detectar
comunidades multidimensionales, que son conjuntos de nodos simultáneamente simila-
res en múltiples capas. Dos nodos se consideran similares en una cierta capa si están
a una distancia angular pequeña en esta capa. Las agrupaciones de nodos que son si-
multáneamente similares en diferentes capas son sobreabundantes en comparación con
una superposición aleatoria de las topoloǵıas de las capas constituyentes. Estos grupos
forman comunidades multidimensionales. La estructura geométrica permite cuantificar
el grado de similaridad entre las diferentes comunidades, que está relacionada con la
distancia angular multidimensional entre ellos. Además, la existencia de correlaciones
geométricas permite predecir enlaces de forma trans-capa, de modo que se puede prede-
cir conexiones en una capa mediante la observación del espacio geométrico oculto en otra
capa. En particular, los nodos que se encuentran a una pequeña distancia hiperbólica
en una capa tienen una probabilidad alta de estar cerca en otra capa y, por lo tanto, la
probabilidad de que estén conectados en esta capa es también alta. Como consecuencia
de ello, conocer la distancia hiperbólica en una capa permite predecir la probabilidad de
conexión en otra capa.

Hemos desarrollado un modelo para crear redes multiplex con correlaciones geométri-
cas. En nuestro modelo, las correlaciones angulares y radiales se pueden ajustar de forma
individual e independientemente de las propiedades topológicas de las capas constitu-
yentes. Creamos las correlaciones de las variables ocultas de nodos utilizando técnicas
cópula. En particular, consideramos tamaños diferentes de capas, lo cual es el caso en el
múltiplex Internet IPv4 / IPv6. En particular, los nodos de grado alto en la capa más
grande tienen una probabilidad alta de existir también es la capa más pequeña. El mode-
lo nos permite estudiar de forma aislada el efecto de las correlaciones en el rendimiento
de “mutual greedy routing”.

En el proceso de greedy routing, los nodos pasan un mensaje a su vecino que esté más
cerca del destino en el espacio geométrico. Los mensajes llegan a su destino o entran
en una trayectoria ćıclica y la entrega falla. Para estudiar navegabilidad en sistemas
multiplex, extendemos el mecanismo de greedy routing de manera que un nodo pasa un
mensaje a su vecino más cercano al del destino en cualquiera de las capas que compren-
den el sistema. Llamamos a este proceso mutual greedy routing. Curiosamente, mutual
greedy routing supera a la navegación que tiene lugar exclusivamente en las redes consti-
tuyentes sólo si las correlaciones geométricas son suficientemente fuertes. Para mostrar
este efecto con el ejemplo de Internet creamos multiplexes sintéticas cuyas topoloǵıas
en las capas individuales imitan a las del sistema real y en las que podemos ajustar las
correlaciones geométricas. Comparando nuestro modelo con las coordenadas inferidas
del sistema emṕırico podemos cuantificar las correlaciones presentes en el Internet real.
De hecho, el nivel emṕırico de correlaciones mejora la navegabilidad mutua del siste-
ma de manera significativa usando tanto las distancias hiperbólicas como las angulares.
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Además, hemos estudiado el caso de más de dos capas de redes. Aumentar el número de
capas hace que el sistema sea casi perfectamente navegable siempre que las correlaciones
sean suficientemente fuertes. Por el contrario, añadir capas sin correlaciones no mejora
la navegabilidad mutua del sistema.

Nuestros descubrimientos pueden dar lugar a una variedad de aplicaciones en muchas
disciplinas, desde mejorar el transporte de información y la navegación en los sistemas de
comunicación de múltiples capas y arquitecturas de datos descentralizadas, a entender
redes estructurales y funcionales del cerebro y descifrar sus relaciones precisas, a predecir
conexiones entre nodos, cuando uno conoce sus patrones de conexión en la otra red.

En resumen, esta tesis está dedicada a los retos de un mundo interconectado que ha
emergido a partir de la reciente revolución digital. La penetración del Internet en las
sociedades modernas juntamente con la Web 2.0 promueven hoy en d́ıa la colaboración
global y el intercambio de ideas casi instantáneo entre usuarios de todo el mundo. Sin
embargo, la dominación de unos pocos poderosos monopolios de información representa
un peligro para la libertad de ideas y decisiones de individuos. Por tanto, dos factores son
esenciales para un futuro próspero en la era digital: diversidad digital y decentralización.
En cuanto al primero, hemos introducido modelos basados en observaciones emṕıricas
que permiten entender mejor la dinámica y las interacciones competitivas de las redes
sociales online, los sistemas claves en el cosmos de la Web 2.0. En particular, nues-
tros descubrimientos revelan las condiciones en las cuales la diversidad digital se puede
sostener. Con respecto al segundo, el diseño de arquitecturas descentralizadas plantea
retos espećıficos. De estos, nos hemos centrado el en problema de búsqueda y navegación
basada exclusivamente en conocimientos locales. Hemos revelado en qué condiciones la
existencia de muchas redes interaccionando facilita estas tareas. Afortunadamente, mu-
chos sistemas reales cumplen estas condiciones. Para concluir, desde una perspectiva a
nivel de sistema, un futuro próspero en el mundo digital compuesto por un paisaje digital
diverso con arquitecturas descentralizadas en constante interacción es posible, pero no
seguro. En esta situación, la conciencia, aśı como la creación de los incentivos adecuados,
son retos importantes que nuestra sociedad debe afrontar. Crear conciencia suficiente e
incentivos correctos para crear ese futuro sigue siendo un reto para la sociedad. Perso-
nalmente, espero que nuestros descubrimientos sean útiles para conseguir este ambicioso
e importante reto.
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A Numerical simulations

This chapter was – with some small changes – published in the Supplemen-
tary Material of my paper “Digital Ecology: Coexistence and Domination
among Interacting Networks” [89]. A preprint version is available at [90].

A.1 Gillespie algorithm
A.1.1 Single network
In the part Evolution and ecology of the digital world we simulate the dynamics of the
evolution of online social networks. We take advantage of the fact that the temporal
events in our model are independent Poisson point processes, which allows us to use the
Gillespie [155,156] algorithm (also known as the Doob-Gillespie [157] algorithm). For a
single network, the algorithm works as follows:

1. Initialize the system and fix the rates corresponding to the respective events (here
λ, µ, δ = 1)

2. a) Evaluate the number of susceptible nodes (NS), the number of active nodes
(NA) as well as the number of edges connecting susceptible and active nodes
(ESA) and the number of edges connecting active and passive nodes (EPA).
Evaluate the sum S = µNS + λ [ESA + EPA] + δNA.

b) Generate random numbers to choose the next event. The probabilities for the
events are the following:
• Mass media activation: µNS/S
• Viral activation: λESA/S
• Viral reactivation: λEPA/S
• Deactivation: δNA/S

c) Evaluate the corresponding time step τ . The corresponding time step is given
by τ = S−1.

3. Update the status of the system. So, if in step 2 a mass media activation was
chosen, we randomly choose a susceptible node and change its status to active.
For a deactivation, we randomly choose an active node that then becomes passive.
In the case of viral activation, we randomly choose an edge connecting a suscep-
tible and an active node and activate the susceptible node at the end of the link.
Similarly, for viral reactivation we randomly choose an edge connecting a passive
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A Numerical simulations

and an active node and the passive node at the end of this edge becomes active.
We increase the time: t → t + τ . We iterate by returning to step 2 until the end
of the simulation is reached.

A.1.2 Multiple network layers
The generalization of the algorithm to multiple layers is straightforward. One evaluates
the probabilities of having a certain dynamical process in a certain layer; for example,
mass media activation in layer i occurs with probability µiNS,i, where NS,i denotes the
number of susceptible nodes with respect to layer i (all the nodes which are in the
underlying network but not in the i-th layer) and µi is the corresponding rate in layer
i. Accordingly, the probability of viral activation in layer i is given by λiESA,i, where
ESA,i is the number of edges connecting active and susceptible nodes in layer i. One then
chooses a dynamical process in a certain layer in accordance with these probabilities.
Finally, τ is given by the inverse of the sum over all these probabilities in all the layers.
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B Topological evolution of isolated online
social networks

This chapter was – with some small changes – published in the Supplemen-
tary Material of my paper “Evolution of the Digital Society Reveals Balance
between Viral and Mass Media Influence” [40]. A preprint version is available
at [41]. Most figures are identical to the preprint version.

B.1 Null model

In Fig. B.1 we present the results from a null model for the role of the underlying
empirical network. We again use the Pokec network as underlying network and add
nodes completely randomly to the network. Note that this corresponds to our model
for λ = 0 and arbitrary µ > 0. However, the choice of µ then just fixes the model
timescale, which we adjust implicitly by transforming physical time to the intrinsic
network timescale given by the number of nodes. We observe that the phase transition
takes place at a larger network size. Note that there is no more parameter to adjust. The
number of components (see inset in Fig. B.1) also varies strongly between the empirical
network and the presented null model.

We conclude that the occurrence of the phase transition is included in the structure
of the underlying network. Nevertheless, a null model with exclusively random subscrip-
tions fails to reproduce the critical point of the phase transition as well as the evolution
of the number of components.

B.2 Pathlength and diameter

We observe the same behavior in the evolution of the average shortest path length and
the network diameter (see Fig. B.2). In the connected regime the pathlength and the
diameter within the GCC decrease. In the disconnected regime, the average shortest
path length and the diameter increase and reach their maximum at the critical point.
The extended model exhibits the same behavior.

B.3 Sustained activity threshold for extended model

In Fig. B.3 we compare the critical parameter λc for the basic and extended model for
the PAP dynamics within the online social network layer, which is equivalent to the SIS
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B Topological evolution of isolated online social networks
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Figure B.1: A null model with underlying Pokec network that consists of randomly adding
nodes to the online social network. Points correspond to the empirical network
and solid lines correspond to the null model.

model. We find that
λc ≈ 0.020 ∼ 0.025 , (B.1)

which appears to be quite robust to the assignment of weights. Below this threshold,
the whole network become passive. We suggest that this corresponds to the practical
disappearance of the network as observed in many real online social networking services.

B.4 Average finite cluster size
Alternatively to the size of the second largest component one can consider the average
finite cluster size, which is the average size of disconnected components without the
largest one. The average finite cluster size also exhibits a peak at the critical point. In
Fig. B.4 we show the average finite cluster size for all components with size N > 1.

B.5 Degree distribution of Pokec OSN
In Fig. B.5 we show the degree distribution of Pokec at different times.

B.6 Delayed edge formation in OSN layer
To test our assumption of instantaneous link formation, we performed the following
experiment. Instead of assuming the instantaneous existence of a link when both of its
end nodes exist in the OSN layer, we delay its formation in the sense that we create
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B.6 Delayed edge formation in OSN layer
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Figure B.2: Pathlength and diameter for basic model (top) and extended model (bottom).
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B Topological evolution of isolated online social networks
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Figure B.3: Sustained activity threshold λc ≈ 0.020 ∼ 0.025. Below this threshold, the activity
of the network is not sustained and eventually the whole network will become
passive.

them with a rate ξ from this point on. The rate ξ clearly has to be larger than δ, which
is the rate of becoming inactive. In Fig. B.6 we present the results for ξ = 10δ and
ξ = 50δ, which we compare with our model (ξ → ∞). We observe that the position of
the critical point is barely affected by the edge creation delay (see Fig. B.6A and C).
The initial increase in the clustering coefficient is shifted to slightly larger network times,
however, for η = 0 it reaches values similar to the case of instantaneous link formation
(see Fig. B.6B). The same tendency is observed for η = −0.65 (see Fig. B.6C). It is
important to note that the assumption of instantaneous link creation is used for the
Pokec network and the model consistently. To sum up, if we assume that links are
created at a timescale which is significantly smaller than the timescale at which users
stop to use the network, our approximation works fine.
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B.6 Delayed edge formation in OSN layer
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Figure B.4: The evolution of the average finite cluster size for the Pokec network, the basic
model, and the extended model for the same parameters as used Fig. 2.2 on page 20.
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B Topological evolution of isolated online social networks
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Figure B.6: Results for delayed edge creation for rate ξ = 10δ and ξ = 50δ. A: Relative size of
the GCC and absolute size of the second largest component for the basic model.
B: Mean local clustering coefficient for the basic model. C: Relative size of the
GCC and absolute size of the second largest component for the extended model.
D: Mean local clustering coefficient for the extended model.
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C Digital ecology

This chapter was – with some small changes – published in the Supplemen-
tary Material of my paper “Digital Ecology: Coexistence and Domination
among Interacting Networks” [89]. A preprint version is available at [90].

C.1 Empirical stability
Independent of the topological properties of the network, the activities for the steady
state solution for an arbitrary number of layers is encoded in the activity curve of a
single layer, which we show in Fig. 2.6 on page 25. At the steady state of nc coexisting
networks, each prevailing layer has the same share of the total virality λi = ωiλ = λ

nc
,

whereas the remaining ones have λj = 0. The steady state activity of the i-th network
is then given by the activity value of a single layer shown in Fig. 2.6 at λ = λi.
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D World model

This chapter is – with some small changes – available as a preprint at [102].
Most figures are identical to the preprint.

D.1 S1 model

We use the S1 model [110–112] to generate the synthetic networks for the underlying
societies in each country. The model allows us to specify the degree distribution and the
level of clustering. The model is based on a circle as a hidden metric space and works
as follows:

1. All nodes are placed on the circle with a randomly assigned variable, θ, which
represents the polar coordinate. θ is uniformly distributed in [0, 2π). To keep
the average node density on the circle constant, its radius grows linearly with the
number of nodes, to satisfy N = 2πR.

2. We assign each node a second hidden variable, κ, which represents its expected
degree. κ is drawn from an arbitrary distribution ρ(κ).

3. A pair of nodes is connected with a probability, r, that depends on their hidden
variables (θ, κ) and (θ′, κ′)1

r(θ, κ; θ′, κ′) =
(

1 + d(θ, θ′)
µκκ′

)−α
, (D.1)

with µ = α−1
2〈k〉 . Here, d(θ, θ′) denotes the geodesic distance between the two nodes

on the circle and 〈k〉 the mean degree. Then, the expected degree, k̄(κ), of a
node with hidden variable κ can be shown to be proportional to κ [112]. As a
consequence, the degree distribution, p(k), of the network follows the shape of the
distribution ρ(κ).

Here, we use an exponential distribution ρξ(κ) = ξe−ξκ with ξ = 10. We set the
parameters α = 1.5 and µ = 0.02. After generating the networks, we remove nodes with
zero degree. Fig. D.1 shows the degree distribution and the clustering spectrum for the
synthetic network created for the US.

1In part Geometry of multiplex networks we use a slightly different version of this model.
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D World model

D.2 Air travel data

Air travel data aggregated on a country basis was taken from
http://visualising.org/datasets/global-flights-network (date of access July 2014). The
original data can be accessed at http://openflights.org/data.html. The network on a
country basis incorporates 230 nodes and 4600 weighted edges which correspond to the
number of routes between countries, i.e. the number of total flights. The dataset contains
around 60.000 of such flights. We extract the subnetwork (see Fig. 4.1c on page 56) by
constraining to the countries listed in Tab. 4.1 on page 62.

D.3 Estimation of data variance

We estimate the variance σ2
N of the data of the number of countries where local networks

prevail by performing a fit and evaluating the deviation of the datapoints from this fit
(see Fig. D.2). We find

σ2
N ≈ 1.5 . (D.2)

D.4 Google trends data

In Fig. D.3 we show the evolution of the Google search volume for Facebook. The
dashed line corresponds to the time of global launch in our model for the best parameter
estimate.

D.5 Double meanfield approximation: Ω̄ > 0 breaks symmetry
of pitchfork bifurcation

The evolution equations for the double meanfield approximation contain an additional
control parameter Ω̄. For Ω̄ = 0 we recover the case of two competing identical networks
as discussed in chapter 3. In this case, the system undergoes a subcritical pitchfork
bifurcation. Such bifurcation is symmetric locally near the critical point. However, the
additional control parameter Ω̄ > 0 breaks this symmetry. As a consequence, the system
undergoes a saddle-node bifurcation instead of the former pitchfork. See Fig. D.4.

D.6 Fate of single realizations in the coinflip region

In Fig. D.5 we show the evolution of the number of countries where local networks pre-
vail for different realizations with the same parameters in the coinflip region. Clearly,
there are two different classes of trajectories: first, those that are constant (red, inter-
national network becomes extinct), and secondly, those that decrease with time (blue,
international network persists). The empirical case corresponds to the latter, and hence
we only average over trajectories that belong to this class in section 4.5.
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Figure D.1: Degree distribution and clustering spectrum for networks generated for the example
of the US (≈ 230.000 nodes).
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Figure D.2: Estimation of data variance. Symbols denote data and the red line a fit (exponen-
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D.7 Guideline to develop fine grained description
In this section, we provide a guideline to generate a fine grained description for the
evolution of networks in a certain country or region of interest. Similar to large eddy
simulations in fluid dynamics [158, 159], we preserve a high accuracy in the region of
interest for the prediction and rely on coarse grained approximative dynamics beyond.

The process to create a customized predictive model is as follows.

1. Choose a country of interest.

2. Define the region of influence given by the connections with the highest weight
connected to the country of interest.

3. Gather empirical historical data of the evolution of the local networks and the
international network in the region of influence.

4. Adjust parameters within the region of interest locally and use generic global pa-
rameters for the remaining countries. A suggestion of parameters to adjust locally
in the influence region can be found in Tab. D.1.

Let us consider the example of Brasil (see Fig. D.6). A possible choice of the influence
region would be the USA, Argentina, Uruguay, Spain, and Portugal. We then propose
to adjust the following three parameters locally in the region of influence: the virality
λ, the media influence µ, and the launch time delay ∆t. Adjusting these parameters
in each country would lead to 240 parameters that have to be adjusted simultaneously,
which is not feasible and would require much data. However, by performing the above
procedure, we reduce significantly the number of parameters (to ≈ 12−18) and maintain
an acceptable level of precision in the region of interest. Hence, this hybrid approach of
adjusting parameters locally within the region of influence and globally beyond enables
the development of precise customized predictions with a feasible effort.
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Figure D.3: Google trends results for Facebook. The gray dashed line shows the time of global
launch predicted by our model.

Quantity Parameter Suggestion
Activity affinity σ Global
Global connectivity α Global
Virality λ Local in region of influence
Media influence µ Local in region of influence or educated guess [40]
Launch time delay ∆t Local in region of influence

Table D.1: Suggestion of parameter adjustment.
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Figure D.4: Bifurcation diagram as a function of the control parameter σ for different values
of Ω̄. Here, λ 〈k〉 = 3.5.
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D.8 Explicit time series
In the following, we present explicit time series of single realizations of our model for
different parameters.

Videos are available online, see [160,161].
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Figure D.7: Evolution of network activity for the first 20 countries. Here, λ = 0.2 per country,
σ = 0.75, ∆t = 2, and α = 2.
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Figure D.8: Evolution of network activity for the second 20 countries (continuation from
Fig. D.7).
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Figure D.9: Evolution of network activity for the last 20 countries (continuation from Fig. D.8).
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D.8 Explicit time series
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Figure D.10: Evolution of network activity for the last 20 countries (continuation from
Fig. D.9).
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D World model

Int.
Loc.

0 20 40 60
0.0

0.1

0.2

0.3

0.4

China

Int.
Loc.

0 20 40 60
0.0

0.1

0.2

0.3
UnitedStates

Int.
Loc.

0 20 40 60
0.0

0.1

0.2

0.3

Japan

Int.
Loc.

0 20 40 60
0.0

0.1

0.2

0.3

India

Int.
Loc.

0 20 40 60
0.0

0.1

0.2

0.3

Brazil

Int.
Loc.

0 20 40 60
0.0

0.1

0.2

0.3

Germany

Int.
Loc.

0 20 40 60
0.0

0.1

0.2

0.3

UnitedKingdom

Int.
Loc.

0 20 40 60
0.0

0.1

0.2

0.3

Russia

Int.
Loc.

0 20 40 60
0.0

0.1

0.2

0.3

France

Int.
Loc.

0 20 40 60
0.0

0.1

0.2

0.3

SouthKorea

Int.
Loc.

0 20 40 60
0.0

0.1

0.2

0.3

0.4
Indonesia

Int.
Loc.

0 20 40 60
0.0

0.1

0.2

0.3

Spain

Int.
Loc.

0 20 40 60
0.0

0.1

0.2

0.3

Canada

Int.
Loc.

0 20 40 60
0.0

0.1

0.2

0.3

Italy

Int.
Loc.

0 20 40 60
0.0

0.1

0.2

0.3

Turkey

Int.
Loc.

0 20 40 60
0.0

0.1

0.2

0.3

Mexico

Int.
Loc.

0 20 40 60
0.0

0.1

0.2

0.3

0.4

Iran

Int.
Loc.

0 20 40 60
0.0

0.1

0.2

0.3

0.4
Vietnam

Int.
Loc.

0 20 40 60
0.0

0.1

0.2

0.3

Poland

Int.
Loc.

0 20 40 60
0.0

0.1

0.2

0.3

Pakistan

Figure D.11: Evolution of network activity for the first 20 countries. Here, σ = 0.25, ∆t = 2,
α = 0.75, and λ = 0.2 per country.

148



D.8 Explicit time series
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Figure D.12: Evolution of network activity for the second 20 countries (continuation from
Fig. D.11).
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D World model
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Figure D.13: Evolution of network activity for the last 20 countries (continuation from
Fig. D.12).
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D.8 Explicit time series
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Figure D.14: Evolution of network activity for the last 20 countries (continuation from
Fig. D.13).
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Figure D.15: Evolution of network activity for the first 20 countries. Here, σ = 1.5, ∆t = 3,
α = 2, and λ = 0.2 per country.
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D.8 Explicit time series
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Figure D.16: Evolution of network activity for the second 20 countries (continuation from
Fig. D.15).
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Figure D.17: Evolution of network activity for the last 20 countries (continuation from
Fig. D.16).
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D.8 Explicit time series
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Figure D.18: Evolution of network activity for the last 20 countries (continuation from
Fig. D.17).
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Figure D.19: Evolution of network activity for the first 20 countries. Here, σ = 1.5, ∆t = 3,
α = 2, and λ = 0.2 per country.
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Figure D.20: Evolution of network activity for the second 20 countries (continuation from
Fig. D.19).
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Figure D.21: Evolution of network activity for the last 20 countries (continuation from
Fig. D.20).
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Figure D.22: Evolution of network activity for the last 20 countries (continuation from
Fig. D.21).
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E Geometry of multiplex networks

This chapter is – with some small changes – available as a preprint at [116]
and currently under review.

E.1 Details of datasets

IPv4/IPv6 Internet. The IPv4 and IPv6 Autonomous Systems (AS) Internet topolo-
gies were extracted from the data collected by the Archipelago active measurement
infrastructure (ARK) developed by CAIDA [162]. The connections in each topology are
not physical but logical, representing AS relationships. An AS is a part of the Internet
infrastructure administrated by a single company or organization. Pairs of ASs peer
to exchange traffic. These peering relationships in the AS topology are represented as
links between AS nodes. CAIDA’s IPv4 and IPv6 [131] datasets provide regular snap-
shots of AS links derived from ongoing traceroute-based IP-level topology measurements.
The IPv4 dataset consists of ASs that can route Internet packets with IPv4 destination
addresses, while the IPv6 dataset consists of ASs that can route packets with IPv6
destination addresses. The considered IPv4 and IPv6 topologies were constructed by
merging the AS link snapshots during the first 15 days of January 2015, which are pro-
vided at [163]. The IPv4 topology (Layer 1) consists of N1 = 37563 nodes (ASs), and has
a power law degree distribution with exponent γ1 = 2.1, average node degree k̄1 = 5.06,
and average clustering c̄1 = 0.63. The IPv6 topology (Layer 2) consists of N2 = 5163
nodes, has a power law degree distribution with exponent γ2 = 2.1, average node degree
k̄2 = 5.21, and average clustering c̄2 = 0.55. There are 4819 common nodes in the two
topologies, i.e., ASs that can route both IPv4 and IPv6 packets.

Air/Train. The Air/Train data is taken from [121]. The data contains the network
of airports and the network of train stations in India, as well as the geographic distances
between the airports and the train stations. For each airport, we aggregate all train
stations that are within 50km from the airport into a supernode. Subsequently, we
declare two supernodes connected if they have at least one train station in common,
or if at least one train station from the one supernode is directly connected to a train
station from the other supernode. If there are no train stations within 50km from
an airport, we consider the nearest train station to the airport, which is considered a
supernode on its own. Each supernode has the same id as its corresponding airport,
i.e., it is considered to be the same node in the multiplex system. The idea behind
this aggregation procedure is to relate train stations to the airports to which they are
geographically close. The considered multiplex consists of the network of airports (Air)
and the network of aggregated supernodes of train stations (Train). The two networks
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consist of N1 = N2 = 69 common nodes. The Air network (Layer 1) has average degree
k̄1 = 5.22, maximum degree kmax

1 = 42, and average clustering c̄1 = 0.79. The Train
network (Layer 2) has average degree k̄2 = 9.33, maximum degree kmax

2 = 41, and
average clustering c̄2 = 0.48.

Drosophila Melanogaster. The Drosophila Melanogaster dataset is taken from [132,
133]. In this dataset, the networks represent protein–protein interactions and the layers
correspond to interactions of different nature. Layer 1 in our multiplex corresponds to
suppressive genetic interaction, while layer 2 corresponds to additive genetic interaction.
More details on the data can be found in [132, 133]. Layer 1 has N1 = 838 nodes, aver-
age degree k̄1 = 4.43, and average clustering c̄1 = 0.28. Its degree distribution can be
approximated by a power law with exponent γ1 = 2.6. Layer 2 has N2 = 755 nodes,
average degree k̄2 = 3.77, and average clustering c̄2 = 0.29. Its degree distribution can
be approximated by a power law with exponent γ2 = 2.8. There are 557 common nodes
in the two layers.

C. Elegans Connectomme. The C. Elegans dataset is taken from [134, 135]. It
corresponds to the neuronal network of the nematode Caenorhabditis Elegans. The
nodes are neurons and each layer corresponds to a different type of synaptic connection:
Electric (Layer 1) and Chemical Monadic (Layer 2). Layer 1 has N1 = 253 nodes,
average degree k̄1 = 4.06, and average clustering c̄1 = 0.24. Layer 2 has N2 = 260 nodes,
average degree k̄2 = 6.83, and average clustering c̄2 = 0.21. The degree distribution in
both layers can be approximated by a power law with exponent γ1 = γ2 = 2.9, and the
two layers have 238 common nodes.

Human Brain. The human brain data is taken from [123]. The data consists of a
structural (anatomical) network, as well as a functional network obtained by an algebraic
aggregation procedure. In both networks, nodes are brain regions—there are 90 different
brain regions in the data. The structural network is obtained by Diffusion Magnetic
Resonance Imaging (dMRI). For each pair of brain regions, the data gives the probability
that these regions are connected. The connection probability is proportional to the
density of the axonal fibers between the regions. In our multiplex, we declare two
regions of the structural network connected if their connection probability is larger than
a threshold ths = 0.92. The functional network is obtained by BOLD fMRI resting state
recordings for the same brain regions. The probability that two regions are connected
here is proportional to a correlation coefficient between the fMRI time series of the region
voxels [123]. In our multiplex, we declare two regions of the functional network connected
if their correlation coefficient is larger than the threshold thf = 0.67. The resulting
structural network (Layer 1) consists of a giant connected component of 85 nodes, with
average degree k̄1 = 5.41, maximum degree kmax

1 = 12, and average clustering c̄1 = 0.49.
The resulting functional network (Layer 2) has a giant connected component of 78 nodes,
average degree k̄2 = 5.48, maximum degree k̄max

2 = 14, and average clustering c̄2 = 0.40.
The two layers have 77 nodes in common.

arXiv. The arXiv data is taken from [136] and contains co-authorship networks from
the free scientific repository arXiv. The nodes are authors that are connected if they
have co-authored a paper. In arXiv, each paper is assigned to one or more relevant
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categories. The data considers only papers with the word “networks” in the title or
abstract from 13 different categories up to May 2014. Layer 1 (physics.bio-ph) in our
multiplex corresponds to the co-authorship network formed by the authors of papers
in the “Biological Physics” category. Layer 2 (cond-mat.dis-nn) corresponds to the
co-authorship network formed by the authors of papers in the “Disordered Systems and
Neural Networks” category. Layer 1 has N1 = 2956 nodes, average degree k̄1 = 4.13, and
average clustering c̄1 = 0.83. Layer 2 hasN2 = 3506 nodes, average degree k̄2 = 4.19, and
average clustering c̄2 = 0.81. The degree distribution in both layers can be approximated
by a power law with exponent γ1 = γ2 = 2.6, and the two layers have 1514 common
nodes.

E.2 Stretch
Here, we consider the stretch which is the ratio of the shortest topological path compared
to those found by greedy routing or mutual greedy routing. In particular, for each
pair of nodes where greedy routing is successful, we evaluate this ratio. In Figs. E.1–
E.6 we show both the mean of the stretch and its variance as a function of radial
and angular correlations for different temperatures as well as different routing types
(hyperbolic/angular). We find that in most cases we have low values of the stretch, i.e.
values close to one, and that in general correlations (both angular and radial) reduce the
stretch as well as its variance significantly. This means that –in addition to increasing
the success rate1– geometric correlations increase the efficiency of successful deliveries.

1For the success rates see Figs. 6.2–6.4 on pages 95–97.
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Figure E.1: Mean stretch and variance for hyperbolic routing in two layers. Each layer has
N = 30000 nodes, power law degree distribution P (k) ∼ k−2.5, k̄ = 10, and
temperature parameter T . From top row to bottom row, T = 0.8, 0.4, 0.1.
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Figure E.2: Mean stretch and variance for angular routing in two layers. Each layer has N =
30000 nodes, power law degree distribution P (k) ∼ k−2.5, k̄ = 10, and temperature
parameter T . From top row to bottom row, T = 0.8, 0.4, 0.1.
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Figure E.3: Mean stretch and variance for hyperbolic routing in three layers. Each layer has
N = 30000 nodes, power law degree distribution P (k) ∼ k−2.5, k̄ = 10, and
temperature parameter T . From top row to bottom row, T = 0.8, 0.4, 0.1.
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Figure E.4: Mean stretch and variance for angular routing in three layers. Each layer has
N = 30000 nodes, power law degree distribution P (k) ∼ k−2.5, k̄ = 10, and
temperature parameter T . From top row to bottom row, T = 0.8, 0.4, 0.1.
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Figure E.5: Mean stretch and variance for hyperbolic routing in four layers. Each layer has
N = 30000 nodes, power law degree distribution P (k) ∼ k−2.5, k̄ = 10, and
temperature parameter T . From top row to bottom row, T = 0.8, 0.4, 0.1.
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Figure E.6: Mean stretch and variance for angular routing in four layers. Each layer has N =
30000 nodes, power law degree distribution P (k) ∼ k−2.5, k̄ = 10, and temperature
parameter T . From top row to bottom row, T = 0.8, 0.4, 0.1.
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works from Varying Vertex Intrinsic Fitness. Phys Rev Lett, 89:258702, 2002.

[80] Alexei Vázquez. Growing network with local rules: Preferential attachment, clus-
tering hierarchy, and degree correlations. Phys Rev E, 67(5):056104, 2003.

[81] R Pastor-Satorras, E Smith, and R V Sole. Evolving protein interaction networks
through gene duplication. J Theor Biol, 222(2):199–210, 2003.

[82] Santo Fortunato, Alessandro Flammini, and Filippo Menczer. Scale-Free Network
Growth by Ranking. Phys Rev Lett, 96(21):218701, 2006.

[83] Raissa M D’Souza, Christian Borgs, Jennifer T Chayes, Noam Berger, and
Robert D Kleinberg. Emergence of tempered preferential attachment from op-
timization. Proc Natl Acad Sci USA, 104(15):6112–7, 2007.

[84] F. Papadopoulos, M. Kitsak, M. Serrano, M. Boguñá, and D. Krioukov. Popularity
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ination among interacting networks. Sci. Rep., 5:10268, 2015.

[90] Kaj-Kolja Kleineberg and Marián Boguñá. Digital ecology: Coexistence and dom-
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[109] Mikko Kivelä, Alex Arenas, Marc Barthelemy, James P. Gleeson, Yamir Moreno,
and Mason A. Porter. Multilayer networks. Journal of Complex Networks, 2014.

[110] M. Serrano, Dmitri Krioukov, and Marián Boguñá. Self-Similarity of Complex
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[111] Marián Boguñá, Dmitri Krioukov, and K. C. Claffy. Navigability of complex
networks. Nature Physics, 5(1):74–80, 2008.
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Marián Boguñá. Hyperbolic geometry of complex networks. Physical Review E,
82(3):036106, 2010.
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